Resource Summary Report

Generated by <u>RRID</u> on May 3, 2025

Chicago University Biophysics Core Facility

RRID:SCR_017915 Type: Tool

Proper Citation

Chicago University Biophysics Core Facility (RRID:SCR_017915)

Resource Information

URL: https://biophy.uchicago.edu/

Proper Citation: Chicago University Biophysics Core Facility (RRID:SCR_017915)

Description: Core provides access to biophysics equipment, integral to research community at University of Chicago.Provides tools, training, and assistance for quantitative analysis of macromolecules and their interactions. Instruments include Seahorse XFe-96 Extracellular Flux Analyzer,Jasco J-1500 CD Spectrometer,Synergy Neo HST Plate Reader,Wyatt DAWN HELEOS II SLS,Wyatt DynaPro Plate Reader DLS,Wyatt DynaPro NanoStar DLS,HORIBA Fluorolog-3,Microcal iTC200,Molecular Imager,Bio-Rad ProteOn XPR to Biacore 8K,Agilent 8453 Spectrophotometer. Core provides staff assistance in conducting experiments.

Synonyms: BioPhysics Core Facilities

Resource Type: service resource, core facility, access service resource

Keywords: Biophysics, equipment, tool, training, assistance, quantitative, analysis, macromolecule, interaction, spectrometer, service, core, ABRF

Funding:

Availability: Open

Resource Name: Chicago University Biophysics Core Facility

Resource ID: SCR_017915

Alternate IDs: ABRF_802

Record Creation Time: 20220129T080337+0000

Record Last Update: 20250503T060753+0000

Ratings and Alerts

No rating or validation information has been found for Chicago University Biophysics Core Facility.

No alerts have been found for Chicago University Biophysics Core Facility.

Data and Source Information

Source: <u>SciCrunch Registry</u>

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>RRID</u>.

Bajwa P, et al. (2023) Cancer-associated mesothelial cell-derived ANGPTL4 and STC1 promote the early steps of ovarian cancer metastasis. JCI insight, 8(6).

Navotnaya P, et al. (2022) Annihilation of Excess Excitations along Phycocyanin Rods Precedes Downhill Flow to Allophycocyanin Cores in the Phycobilisome of Synechococcus elongatus PCC 7942. The journal of physical chemistry. B, 126(1), 23.