Resource Summary Report

Generated by <u>RRID</u> on Apr 8, 2025

Julich-Brain Cytoarchitectonic Atlas

RRID:SCR_023277 Type: Tool

Proper Citation

Julich-Brain Cytoarchitectonic Atlas (RRID:SCR_023277)

Resource Information

URL: https://search.kg.ebrains.eu/?category=Dataset&q=julich%20brain#f5a9e274-b291-4f79-9c19-f3467ee753d5

Proper Citation: Julich-Brain Cytoarchitectonic Atlas (RRID:SCR_023277)

Description: Atlas presents cytoarchitectonic maps in several coordinate spaces, such as MNI colin27, MNI152, and freesurfer. These maps originate from peer-reviewed probability maps that define both cortical and subcortical brain regions and account for the brain's interindividual variability by analyzing data from multiple post-mortem samples. For a whole-brain parcellation, the available probability maps are combined into a maximum probability map by considering for each voxel the probability of all cytoarchitectonic brain regions, and determining the most probable assignment. Atlas stands as reference atlas for the Human Brain Project and is embedded within the European research infrastructure platform, EBRAINS.

Abbreviations: JBA

Synonyms: Julich-Brain Atlas

Resource Type: atlas, data or information resource

Defining Citation: PMID:32732281

Keywords: Interoperable atlas, human brain, 3D probabilistic atlas, human brain's cytoarchitecture, cytoarchitectonic maps, cortical areas, subcortical nuclei

Funding:

Availability: Free, Freely available

Resource Name: Julich-Brain Cytoarchitectonic Atlas

Resource ID: SCR_023277

License: CC BY-NC-SA 4.0

Record Creation Time: 20230214T050231+0000

Record Last Update: 20250407T220742+0000

Ratings and Alerts

No rating or validation information has been found for Julich-Brain Cytoarchitectonic Atlas.

No alerts have been found for Julich-Brain Cytoarchitectonic Atlas.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>RRID</u>.

Puschmann S, et al. (2024) Attention-driven modulation of auditory cortex activity during selective listening in a multi-speaker setting. The Journal of neuroscience : the official journal of the Society for Neuroscience.

Kleven H, et al. (2023) AtOM, an ontology model to standardize use of brain atlases in tools, workflows, and data infrastructures. Scientific data, 10(1), 486.