Resource Summary Report

Generated by RRID on Apr 11, 2025

Atlasing of the basal ganglia

RRID:SCR_009431 Type: Tool

Proper Citation

Atlasing of the basal ganglia (RRID:SCR_009431)

Resource Information

URL: http://www.nitrc.org/projects/atag/

Proper Citation: Atlasing of the basal ganglia (RRID:SCR_009431)

Description: This atlas takes advantage of ultra-high resolution 7T MRI to provide unprecedented levels of detail on structures of the basal ganglia in-vivo. The atlas includes probability maps of the Subthalamic Nucleus (STh) using T2*-imaging. For now it has been created on 13 young healthy participants with a mean age of 24.38 (range: 22-28, SD: 2.36). We recently also created atlas STh probability maps from 8 middle-aged participants with a mean age of 50.67 (range: 40-59, SD: 6.63), and 9 elderly participants with a mean age of 72.33 (range: 67-77, SD: 2.87). You can find more details about the creation of these maps in the following papers: Young: http://www.ncbi.nlm.nih.gov/pubmed/22227131 Middle-aged & Elderly: http://www.ncbi.nlm.nih.gov/pubmed/23486960 Participating institutions are the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, and the Cognitive Science Center Amsterdam, University of Amsterdam, the Netherlands.

Abbreviations: Atlasing of the basal ganglia

Resource Type: data or information resource, atlas

Defining Citation: PMID:22227131, PMID:23486960

Keywords: magnetic resonance, mri, late adult human, early adult human, middle adult human, basal ganglia

Related Condition: Aging

Funding:

Availability: Creative Commons License

Resource Name: Atlasing of the basal ganglia

Resource ID: SCR_009431

Alternate IDs: nlx_155581

Record Creation Time: 20220129T080252+0000

Record Last Update: 20250410T065830+0000

Ratings and Alerts

No rating or validation information has been found for Atlasing of the basal ganglia.

No alerts have been found for Atlasing of the basal ganglia.

Data and Source Information

Source: <u>SciCrunch Registry</u>

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>RRID</u>.

Wang L, et al. (2021) Decreased Resting-State Functional Connectivity of Periaqueductal Gray in Temporal Lobe Epilepsy Comorbid With Migraine. Frontiers in neurology, 12, 636202.

Weiss M, et al. (2015) Spatial normalization of ultrahigh resolution 7 T magnetic resonance imaging data of the postmortem human subthalamic nucleus: a multistage approach. Brain structure & function, 220(3), 1695.

de Hollander G, et al. (2015) The subcortical cocktail problem; mixed signals from the subthalamic nucleus and substantia nigra. PloS one, 10(3), e0120572.

Mulder MJ, et al. (2014) Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain structure & function, 219(4), 1239.