Resource Summary Report

Generated by RRID on Apr 25, 2025

EEGsynth

RRID:SCR_018732

Type: Tool

Proper Citation

EEGsynth (RRID:SCR_018732)

Resource Information

URL: https://github.com/eegsynth/eegsynth

Proper Citation: EEGsynth (RRID:SCR_018732)

Description: Open source Python codebase that provides real-time interface between open-hardware devices for electrophysiological recordings like EEG, EMG, and ECG, and analog and digital devices like MIDI, OSC, and analog synthesizers. This allows one to use electrical brain/body activity to flexibly control devices in real-time.

Resource Type: software resource, software application

Keywords: Codebase, electrophysiological recording, interface, analog, digital device, analog synthesizer, device control, electrical brain activity, EEG, EMG, ECG, BCI, Neurofeedback, Biofeedback, Music, MIDI, OSC, Python

Funding:

Availability: Free, Freely available

Resource Name: EEGsynth

Resource ID: SCR_018732

Alternate URLs: https://www.eegsynth.org, http://pypi.org/project/eegsynth/

License: GPLv3

Record Creation Time: 20220129T080341+0000

Record Last Update: 20250421T054251+0000

Ratings and Alerts

No rating or validation information has been found for EEGsynth.

No alerts have been found for EEGsynth.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.

Chen P, et al. (2021) Hybrid Harmony: A Multi-Person Neurofeedback Application for Interpersonal Synchrony. Frontiers in neuroergonomics, 2, 687108.

Farrugia N, et al. (2021) Beta and Theta Oscillations Correlate With Subjective Time During Musical Improvisation in Ecological and Controlled Settings: A Single Subject Study. Frontiers in neuroscience, 15, 626723.