Generated by RRID on May 15, 2025

New York University Grossman School of Medicine Applied Bioinformatics Laboratories Facility

RRID:SCR_019178 Type: Tool

Proper Citation

New York University Grossman School of Medicine Applied Bioinformatics Laboratories Facility (RRID:SCR_019178)

Resource Information

URL: <u>https://med.nyu.edu/research/scientific-cores-shared-resources/applied-bioinformatics-</u> laboratories

Proper Citation: New York University Grossman School of Medicine Applied Bioinformatics Laboratories Facility (RRID:SCR_019178)

Description: Core provides computational analysis for high throughput genomic data, including but not limited to, next generation sequencing data. Our mission is to accelerate scientific discoveries by guiding experimental design, performing robust data quality assessment, and carrying out comprehensive computational analyses. Registration to iLab required.

Synonyms: Applied Bioinformatics Laboratories

Resource Type: service resource, core facility, access service resource

Keywords: USEDit, next generation sequencing data, genomic data, data quality assessment, computational analyses, ABRF, ABRF

Funding: NCI P30CA016087; NIH Office of the Director S10 OD010751

Resource Name: New York University Grossman School of Medicine Applied Bioinformatics Laboratories Facility

Resource ID: SCR_019178

Alternate IDs: ABRF_819

Alternate URLs: https://coremarketplace.org/?FacilityID=819

Record Creation Time: 20220129T080343+0000

Record Last Update: 20250514T061855+0000

Ratings and Alerts

No rating or validation information has been found for New York University Grossman School of Medicine Applied Bioinformatics Laboratories Facility.

No alerts have been found for New York University Grossman School of Medicine Applied Bioinformatics Laboratories Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>RRID</u>.

Goldblatt D, et al. (2024) Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. bioRxiv : the preprint server for biology.

Goldblatt D, et al. (2024) Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. eLife, 13.

Molenaars M, et al. (2024) Acute inhibition of iron-sulfur cluster biosynthesis disrupts metabolic flexibility in mice. bioRxiv : the preprint server for biology.

Zhang W, et al. (2023) Mouse genome rewriting and tailoring of three important disease loci. Nature, 623(7986), 423.

Glytsou C, et al. (2023) Mitophagy Promotes Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer discovery, 13(7), 1656.

Chang SH, et al. (2023) Digital spatial profiling to predict recurrence in grade 3 stage I lung adenocarcinoma. The Journal of thoracic and cardiovascular surgery.