Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
URL: http://portal.ncibi.org/gateway/saga.html
Proper Citation: Substructure Index-based Approximate Graph Alignment (RRID:SCR_003434)
Description: SAGA (Substructure Index-based Approximate Graph Alignment) is a tool for querying a biological graph database to retrieve matches between subgraphs of molecular interactions and biological networks. SAGA implements an efficient approximate subgraph matching algorithm that can be used for a variety of biological graph matching problems such as the pathway matching SAGA uses to compare pathways in KEGG and Reactome. You can also use SAGA to find matches in literature databases that have been parsed into semantic graphs. In this use of SAGA, portions of PubMed have been parsed into graphs that have nodes representing gene names. A link is drawn between two genes if they are discussed in the same sentence (indicating there is potential association between the two genes). SAGA lets you match graphs between different databases even though the content is distinct and the databases organize pathways in different ways. This cross-database matching is achieved by SAGA's flexible approximate subgraph matching model that computes graph similarity, and allows for node gaps, node mismatches, and graph structural differences. Comparing pathways from different databases can be a useful precursor to pathway data integration. SAGA is very efficient for querying relatively small graphs, but becomes prohibitory expensive for querying large graphs. Large graph data sets are common in many emerging database applications, and most notably in large-scale scientific applications. To fully exploit the wealth of information encoded in graphs, effective and efficient graph matching tools are critical. Due to the noisy and incomplete nature of real graph datasets, approximate, rather than exact, graph matching is required. Furthermore, many modern applications need to query large graphs, each of which has hundreds to thousands of nodes and edges. TALE is an approximate subgraph matching tool for matching graph queries with a large number of nodes and edges. TALE employs a novel indexing technique that achieves a high pruning power and scales linearly with the database size.
Abbreviations: SAGA
Synonyms: SAGA (Substructure Index-based Approximate Graph Alignment), SAGA - Substructure Index-based Approximate Graph Alignment, SAGA: A Fast and Flexible Graph Matching Tool
Resource Type: software resource, software application
Defining Citation: PMID:17110368
Keywords: gene, algorithm, alignment, biological, graph, interaction, literature, molecular, pathway, query, reactome, structural, subgraph, substructure, tool, graph similarity
Expand Allis listed by |
|
has parent organization |
|
has parent organization |
We found {{ ctrl2.mentions.total_count }} mentions in open access literature.
We have not found any literature mentions for this resource.
We are searching literature mentions for this resource.
Most recent articles:
{{ mention._source.dc.creators[0].familyName }} {{ mention._source.dc.creators[0].initials }}, et al. ({{ mention._source.dc.publicationYear }}) {{ mention._source.dc.title }} {{ mention._source.dc.publishers[0].name }}, {{ mention._source.dc.publishers[0].volume }}({{ mention._source.dc.publishers[0].issue }}), {{ mention._source.dc.publishers[0].pagination }}. (PMID:{{ mention._id.replace('PMID:', '') }})
A list of researchers who have used the resource and an author search tool
A list of researchers who have used the resource and an author search tool. This is available for resources that have literature mentions.
No rating or validation information has been found for Substructure Index-based Approximate Graph Alignment.
No alerts have been found for Substructure Index-based Approximate Graph Alignment.
Source: SciCrunch Registry