Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://github.com/lh3/psmc.git
Software package for implementation of Pairwise Sequentially Markovian Coalescent model. Infers population size history from diploid sequence.
Proper citation: PSMC (RRID:SCR_017229) Copy
http://wasabiapp.org/software/prank/
Software application as probabilistic multiple alignment program for DNA, codon and amino-acid sequences. Allows for defining potential structure for sequences to be aligned and then, simultaneously with the alignment, predicts the locations of structural units in the sequences.
Proper citation: prank (RRID:SCR_017228) Copy
https://github.com/josephryan/matemaker
Software tool to make artificial mate pairs from long sequences for scaffolding.
Proper citation: matemaker (RRID:SCR_017199) Copy
https://github.com/BackofenLab/GraphClust-2
Software tool for scalable clustering of RNAs based on sequence and secondary structures similarities. Implemented within Galaxy framework. Used for studying RNA function.
Proper citation: GraphClust2 (RRID:SCR_017286) Copy
Software tool for analyzing repetitive DNA found in genome sequences. Software package for identification and classification of genomic repeats. Used for identifying patterns of local alignments induced by certain classes of repeats.
Proper citation: PILER (RRID:SCR_017333) Copy
NIH initiative to support production of cDNA libraries, clones and 5'/3' sequences and to provide set of full-length (open reading frame) sequences and cDNA clones of expressed genes for Xenopus laevis and Xenopus tropicalis. Clones distribution is outsourced to for profit companies. Project concluded in September 2008. Resources generated by XGC are publicly accessible to biomedical research community. All sequences are deposited into GenBank.Corresponding clones are available through IMAGE clone distribution network. With conclusion of XGC project, GenBank records of XGC sequences will be frozen, without further updates. Since knowledge of what constitutes full-length coding region for some of genes and transcripts for which we have XGC clones will likely change in future, users planning to order XGC clones will need to monitor for these changes. Users can make use of genome browsers and gene-specific databases, such as UCSC Genome browser, NCBI's Map Viewer, and Entrez Gene, to view relevant regions of genome (browsers) or gene-related information (Entrez Gene).
Proper citation: Xenopus Gene Collection (RRID:SCR_007023) Copy
Part of zebrafish genome project. ZGC project to produce cDNA libraries, clones and sequences to provide complete set of full-length (open reading frame) sequences and cDNA clones of expressed genes for zebrafish. All ZGC sequences are deposited in GenBank and clones can be purchased from distributors of IMAGE consortium. With conclusion of ZGC project in September 2008, GenBank records of ZGC sequences will be frozen, without further updates. Since definition of what constitutes full-length coding region for some of genes and transcripts for which we have ZGC clones will likely change in future, users planning to order ZGC clones will need to monitor for these changes. Users can make use of genome browsers and gene-specific databases, such as UCSC Genome browser, NCBI's Map Viewer, and Entrez Gene, to view relevant regions of genome (browsers) or gene-related information (Entrez Gene).
Proper citation: Zebrafish Gene Collection (RRID:SCR_007054) Copy
http://wwwmgs.bionet.nsc.ru/mgs/programs/panalyst/
WebProAnalyst provides web-accessible analysis for scanning the quantitative structure-activity relationships in protein families. It searches for a sequence region, whose substitutions are correlated with variations in the activities of a homologous protein set, the so-called activity modulating sites. WebProAnalyst allows users to search for the key physicochemical characteristics of the sites that affect the changes in protein activities. It enables the building of multiple linear regression and neural networks models that relate these characteristics to protein activities. WebProAnalyst implements multiple linear regression analysis, back propagation neural networks and the Structure-Activity Correlation/Determination Coefficient (SACC/SADC). A back propagation neural network is implemented as a two-layered network, one layer as input, the other as output (Rumelhart et al, 1986). WebProAnalyst uses alignment of amino acid sequences and data on protein activity (pK, Km, ED50, among others). The input data are the numerical values for the physicochemical characteristics of a site in the multiple alignment given by a slide window. The output data are the predicted activity values. The current version of WebProAnalyst handles a single activity for a single protein. The SACC/SADC may be defined as an estimate of the strongest multiple correlation between the physicochemical characteristics of a site in a multiple alignment and protein activities. The SACC/SADC coefficient makes possible the calculation of the possible highest correlation achievable for the quantitative relationship between the physicochemical properties of sites and protein activities. The SACC/SADC is a convenient means for an arrangement of positions by their functional significance. WebProAnalyst outputs a list of multiple alignment positions, the respective correlation values, also regression analysis parameters for the relationships between the amino acid physicochemical characteristics at these positions and the protein activity values.
Proper citation: Webproanalyst (RRID:SCR_008348) Copy
A software package for the analysis of nucleotide polymorphism from aligned DNA sequence data. DnaSP can estimate several measures of DNA sequence variation within and between populations (in noncoding, synonymous or nonsynonymous sites, or in various sorts of codon positions), as well as linkage disequilibrium, recombination, gene flow and gene conversion parameters. DnaSP can also carry out several tests of neutrality: Hudson, Kreitman and Aguad (1987), Tajima (1989), McDonald and Kreitman (1991), Fu and Li (1993), and Fu (1997) tests. Additionally, DnaSP can estimate the confidence intervals of some test-statistics by the coalescent. The results of the analyses are displayed on tabular and graphic form.
Proper citation: DnaSP (RRID:SCR_003067) Copy
Digital atlas of gene expression patterns in developing and adult mouse. Several reference atlases are also available through this site. Expression patterns are determined by non-radioactive in situ hybridization on serial tissue sections. Sections are available from several developmental ages: E10.5, E14.5 (whole embryos), E15.5, P7 and P56 (brains only). To retrieve expression patterns, search by gene name, site of expression, GenBank accession number or sequence homology. For viewing expression patterns, GenePaint.org features virtual microscope tool that enables zooming into images down to cellular resolution.
Proper citation: GenePaint (RRID:SCR_003015) Copy
Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling
Proper citation: Computational Biology Center (RRID:SCR_002877) Copy
http://bibiserv.techfak.uni-bielefeld.de/dialign/
Tool for multiple sequence alignment using various sources of external information that is particularly useful to detect local homologies in sequences with low overall similarity. While standard alignment methods rely on comparing single residues and imposing gap penalties, DIALIGN constructs pairwise and multiple alignments by comparing entire segments of the sequences. No gap penalty is used. This approach can be used for both global and local alignment, but it is particularly successful in situations where sequences share only local homologies. Several versions of DIALIGN are available online at GOBICS, http://dialign.gobics.de/
Proper citation: DIALIGN (RRID:SCR_003041) Copy
http://lab.rockefeller.edu/tuschl/
RNA is not only a carrier of genetic information, but also a catalyst and a guide for sequence-specific recognition and processing of other RNA molecules. This lab investigates the regulatory mechanisms of RNA interference, RNA-mediated translational control, and nuclear pre-mRNA splicing. Classical and combinatorial biochemical techniques are used to analyze the function of the RNA- and protein-components involved in those processes.
Proper citation: Tuschl Laboratory: RNA Molecular Biology (RRID:SCR_002866) Copy
Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.
Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Main_Page
Laboratory portal, including software, web-based tools, databases and data sets, related to their research that focuses on the development and application of biophysical and bioinformatics methods aimed at understanding the structural and energetic origins of protein-protein, protein-nucleic acid, and protein-membrane interactions. Their work includes fundamental theoretical research, the development of software tools, and applications to problems of biological importance. In this regard they maintain an active collaborative computational and experimental research program on the molecular basis of cell-cell adhesion. Other problems of current interest include protein structure prediction, the organization of protein sequence/structure space, the prediction of protein function based on protein structure, the structural origins of specificity in protein-DNA interactions, RNA function and, more generally, the electrostatic properties of biological macromolecules.
Proper citation: Honig Lab (RRID:SCR_003410) Copy
Web application to search nucleotide databases using a nucleotide query. Algorithms: blastn, megablast, discontiguous megablast.
Proper citation: BLASTN (RRID:SCR_001598) Copy
http://www.morpholinodatabase.org/
Central database to house data on morpholino screens currently containing over 700 morpholinos including control and multiple morpholinos against the same target. A publicly accessible sequence-based search opens this database for morpholinos against a particular target for the zebrafish community. Morpholino Screens: They set out to identify all cotranslationally translocated genes in the zebrafish genome (Secretome/CTT-ome). Morpholinos were designed against putative secreted/CTT targets and injected into 1-4 cell stage zebrafish embryos. The embryos were observed over a 5 day period for defects in several different systems. The first screen examined 184 gene targets of which 26 demonstrated defects of interest (Pickart et al. 2006). A collaboration with the Verfaillie laboratory examined the knockdown of targets identified in a comparative microarray analysis of hematopoietic stem cells demonstrating how microarray and morpholino technologies can be used in conjunction to enrich for defects in specific developmental processes. Currently, many collaborations are underway to identify genes involved in morphological, kidney, skin, eye, pigment, vascular and hematopoietic development, lipid metabolism and more. The screen types referred to in the search functions are the specific areas of development that were examined during the various screens, which include behavior, general morphology, pigmentation, toxicity, Pax2 expression, and development of the craniofacial structures, eyes, kidneys, pituitary, and skin. Only data pertaining to specific tests performed are presented. Due to the complexity of this international collaboration and time constraints, not all morpholinos were subjected to all screen types. They are currently expanding public access to the database. In the future we will provide: * Mortality curves and dose range for each morpholino * Preliminary data regarding the effectiveness of each morpholino * Expanded annotation for each morpholino * External linkage of our morpholino sequences to ZFIN and Ensembl. To submit morpholino-knockdown results to MODB please contact the administrator for a user name and password.
Proper citation: Morpholino Database (RRID:SCR_001378) Copy
http://scitools.idtdna.com/analyzer/Applications/OligoAnalyzer/
Web-based application for analyzing oligonucleotides. Analysis proceeds after the sequence has been entered and the calculations modified based on target type, oligo concentration, sodium ion concentration, magnesium ion concentration, and dNTP concentration.
Proper citation: Integrated DNA Technologies OligoAnalyzer (RRID:SCR_001363) Copy
https://www.hgsc.bcm.edu/content/sea-urchin-genome-project
Provides informationa about Genome of California Purple Sea Urchin, one species (Strongylocentrotus purpuratus) of which has been sequenced and annotated by Sea Urchin Genome Sequencing Consortium led by HGSC. Reports sequence and analysis of genome of sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology.
Proper citation: Sea Urchin Genome Project (RRID:SCR_001735) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Friend is a bioinformatics application designed for simultaneous analysis and visualization of multiple structures and sequences of proteins and/or DNA/RNA. The application provides basic functionalities such as: structure visualization with different rendering and coloring, sequence alignment, and simple phylogeny analysis, along with a number of extended features to perform more complex analyses of sequence structure relationships, including: structural alignment of proteins, investigation of specific interaction motifs, studies of protein-protein and protein-DNA interactions, and protein super-families. Friend is also useful for the functional annotation of proteins, protein modeling, and protein folding studies. Friend provides three levels of usage; 1) an extensive GUI for a scientist with no programming experience, 2) a command line interface for scripting for a scientist with some programming experience, and 3) the ability to extend Friend with user written libraries for an experienced programmer. The application is linked and communicates with local and remote sequence and structure databases.
Proper citation: An Integrated Multiple Structure Visualization and Multiple Sequence Alignment Application (RRID:SCR_001646) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.