Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://scdevdb.deepomics.org/
Database for insights into single cell gene expression profiles during human developmental processes. Interactive database provides DE gene lists in each developmental pathway, t-SNE map, and GO and KEGG enrichment analysis based on these differential genes.
Proper citation: Single Cell Developmental Database (RRID:SCR_017546) Copy
Metadata management system built for EBRAINS. Multi modal metadata store which brings together information from different areas of Human Brain Project as well as from external partners. Graph database tracks linkage between experimental data and neuroscientific data science supporting more extensive data reuse and complex computational research.Supports rich terminologies, ontologies and controlled vocabularies. Built by design to support iterative elaborations of common standards and supports these by probabilistic suggestion and review systems.
Proper citation: EBRAINS Knowledge Graph (RRID:SCR_017612) Copy
http://circadb.hogeneschlab.org/
Database of mammalian circadian gene expression profiles. Works with link outs to Wikipedia, HomoloGene, Refseq, etc.. Open source database of circadian transcriptional profiles from time course expression experiments from mice and humans.
Proper citation: CircaDB (RRID:SCR_018078) Copy
http://www.bionet.umn.edu/tpf/home.html
Procure and distribute human tissue and other biological samples in support of basic, translational, and clinical cancer research at the University of Minnesota. The TPF is a centralized resource with standardized patient consent, sample collection, processing, storage, quality control, distribution, and electronic record maintenance. Since the 1996 inception of the TPF, over 61,000 tissue samples including well-preserved samples of malignant and benign tumors, organ-matched normal tissue, and other types of diseased tissues, have been collected from surgical specimens obtained at the University of Minnesota Medical Center-Fairview (UMMC-F) University Campus. Surgical pathologists are intellectually engaged in TPF functions, providing researchers with specimen-oriented medical consultation to facilitate research productivity. Prior to surgery, TPF personnel identify and consent patients for procurement of tissue, blood, urine, saliva, and ascites fluid. Within the integrated working environment of the surgical pathology laboratory, freshly obtained tissues not needed for diagnosis are selected and provided by pathologists to TPF personnel. Tissue samples are then assigned an independent code and processed. TPF staff can also work with researchers to individualize the procurement of tissues to fit specific research needs.
Proper citation: University of Minnesota Tissue Procurement Facility (RRID:SCR_004270) Copy
http://www.nimhans.kar.nic.in/neuropathology/neuropath2.htm#brainbank
A National Facility to promote research in Neurobiology using human nervous tissues. The brain tissues collected with informed consent of close relatives within 4-24 hours following death are frozen for Biochemical, Immuno-histochemical and Molecular Biological studies. A large number of formalin fixed brain tissues from various Neurological, Neurosurgical and Psychiatric disorders are also available for study.
Proper citation: Bangalore Brain Bank (RRID:SCR_004227) Copy
http://www.tbi-impact.org/?p=impact%2Fcalc&btn_calc=GO+TO+CALCULATOR
A calculator that calculates the prediction models for 6 month outcome after Traumatic Brain Injury. Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients. The sequential prediction models may be used as an aid to estimate 6 month outcome in patients with severe or moderate traumatic brain injury (TBI). However, the prediction rule can only complement, never replace, clinical judgment and can therefore be used only as a decision-support system.
Proper citation: IMPACT Prognostic Calculator (RRID:SCR_004730) Copy
Bradley Voytek''''s blog is where he tries out new ideas. He will often be wrong, but that''''s the point. He is a Neuroscientist studying human cognition, neuroplasticity, and brain computer interfacing. Into really geeky stuff. World zombie neuroscience expert. Also runs brainSCANr.com with his wife, Jessica.
Proper citation: Oscillatory Thoughts (RRID:SCR_005481) Copy
http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/JHUtemplate_newuser.html
DTI white matter atlases with different data sources and different image processing. These include single-subject, group-averaged, B0 correction, processed atlases (White Matter Parcellation Map, Tract-probability maps, Conceptual difference between the WMPM and tract-probability maps), and linear or non-linear transformation for automated white matter segmentation. # Adam single-subject white matter atlas (old version): These are electronic versions of atlases published in Wakana et al, Radiology, 230, 77-87 (2004) and MRI Atlas of Human White Matter, Elsevier. ## Original Adam Atlas: 256 x 256 x 55 (FOV = 246 x 246 mm / 2.2 mm slices) (The original matrix is 96x96x55 (2.2 mm isotropic) which is zerofilled to 256 x 256 ## Re-sliced Adam Atlas: 246 x 246 x 121 (1 mm isotropic) ## Talairach Adam: 246 x 246 x 121 (1 mm isotropic) # New Eve single-subject white matter atlas: The new version of the single-subject white matter atlas with comprehensive white matter parcellation. ## MNI coordinate: 181 x 217 x 181 (1 mm isotropic) ## Talairach coordinate: 181 x 217 x 181 (1 mm isotropic) # Group-averaged atlases: This atlas was created from their normal DTI database (n = 28). The template was MNI-ICBM-152 and the data from the normal subjects were normalized by affine transformation. Image dimensions are 181x217x181, 1 mm isotropic. There are two types of maps. The first one is the averaged tensor map and the second one is probabilistic maps of 11 white matter tracts reconstructed by FACT. # ICBM Group-averaged atlases: This atlas was created from ICBM database. All templates follow Radiology convention. You may need to flip right and left when you use image registration software that follows the Neurology convention.
Proper citation: DTI White Matter Atlas (RRID:SCR_005279) Copy
https://www.youtube.com/user/iniusc
Videos uploaded to YouTube by the Laboratory of Neuro Imaging (LONI). The Laboratory of Neuro Imaging at UCLA strives to improve our understanding of the brain in health and disease. LONI is a leader in the development of advanced computational algorithms and scientific approaches for the comprehensive and quantitative mapping of brain structure and function.
Proper citation: Laboratory of Neuro Imaging - YouTube (RRID:SCR_005462) Copy
http://bioapps.rit.albany.edu/MITOPRED/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. It predicts nuclear-encoded mitochondrial proteins from all eukaryotic species including plants. Prediction is based on the occurrence patterns of Pfam domains (version 16.0) in different cellular locations, amino acid composition and pI value differences between mitochondrial and non-mitochondrial locations. Additionally, you may download MITOPRED predictions for complete proteomes. Re-calculated predictions are instantly accessible for proteomes of Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila, Homo sapiens, Mus musculus and Arabidopsis species as well as all the eukaryotic sequences in the Swiss-Prot and TrEMBL databases. Queries, at different confidence levels, can be made through four distinct options: (i) entering Swiss-Prot/TrEMBL accession numbers; (ii) uploading a local file with such accession numbers; (iii) entering protein sequences; (iv) uploading a local file containing protein sequences in FASTA format. The Mitopred algorithm works based on the differences in the Pfam domain occurrence patters and amino acid composition differences in different cellular compartments. Location specific Pfam domains have been determined from the entire eukaryotic set of Swissprot database. Similarly, differences in the amino acid composition between mitochondrial and non-mitochondrial sequences were pre-calculated. This information is used to calculate location-specific amino acid weights that are used to calculate amino acid score. Similarly, pI average values of the N-terminal 25 residues in different cellular location were also determined. This knowledge-base is accessed by the program during execution.
Proper citation: mitopred (RRID:SCR_006135) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
http://www.loni.ucla.edu/~thompson/thompson.html
The UCLA laboratory of neuroimaging is working in several areas to enhance knowledge of anatomy, including brain mapping in large human populations, HIV, Schizophrenia, methamphetamine, tumor growth and 4d brain mapping, genetics and detection of abnormalities.
Proper citation: University of California at Los Angeles, School of Medicine: Neuro Imaging Lab of Thompson (RRID:SCR_001924) Copy
http://humanconnectome.org/connectome/connectomeDB.html
Data management platform that houses all data generated by the Human Connectome Project - image data, clinical evaluations, behavioral data and more. ConnectomeDB stores raw image data, as well as results of analysis and processing pipelines. Using the ConnectomeDB infrastructure, research centers will be also able to manage Connectome-like projects, including data upload and entry, quality control, processing pipelines, and data distribution. ConnectomeDB is designed to be a data-mining tool, that allows users to generate and test hypotheses based on groups of subjects. Using the ConnectomeDB interface, users can easily search, browse and filter large amounts of subject data, and download necessary files for many kinds of analysis. ConnectomeDB is designed to work seamlessly with Connectome Workbench, an interactive, multidimensional visualization platform designed specifically for handling connectivity data. De-identified data within ConnectomeDB is publicly accessible. Access to additional data may be available to qualified research investigators. ConnectomeDB is being hosted on a BlueArc storage platform housed at Washington University through the year 2020. This data platform is based on XNAT, an open-source image informatics software toolkit developed by the NRG at Washington University. ConnectomeDB itself is fully open source.
Proper citation: ConnectomeDB (RRID:SCR_004830) Copy
http://ww2.sanbi.ac.za/Dbases.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The STACKdb is knowledgebase generated by processing EST and mRNA sequences obtained from GenBank through a pipeline consisting of masking, clustering, alignment and variation analysis steps. The STACK project aims to generate a comprehensive representation of the sequence of each of the expressed genes in the human genome by extensive processing of gene fragments to make accurate alignments, highlight diversity and provide a carefully joined set of consensus sequences for each gene. The STACK project is comprised of the STACKdb human gene index, a database of virtual human transcripts, as well as stackPACK, the tools used to create the database. STACKdb is organized into 15 tissue-based categories and one disease category. STACK is a tool for detection and visualization of expressed transcript variation in the context of developmental and pathological states. The data system organizes and reconstructs human transcripts from available public data in the context of expression state. The expression state of a transcript can include developmental state, pathological association, site of expression and isoform of expressed transcript. STACK consensus transcripts are reconstructed from clusters that capture and reflect the growing evidence of transcript diversity. The comprehensive capture of transcript variants is achieved by the use of a novel clustering approach that is tolerant of sub-sequence diversity and does not rely on pairwise alignment. This is in contrast with other gene indexing projects. STACK is generated at least four times a year and represents the exhaustive processing of all publicly available human EST data extracted from GenBank. This processed information can be explored through 15 tissue-specific categories, a disease-related category and a whole-body index
Proper citation: Sequence Tag Alignment and Consensus Knowledgebase Database (RRID:SCR_002156) Copy
http://www.ibiblio.org/dnam/mainpage.html
This site provides access to mutation databases and software including the human hprt database, Human p53 database, Transgenic lacZ database, and Transgenic lacI database. Other avaialble programs include Mutational spectra comparison and relational database data entry. The most recent hprt database contains information on over 2,300 mutations found in vivo and in vitro in the human hprt gene and runs under Windows. The version for evaluation on this homepage has fewer mutations and is a DOS program. The database contains information on the mutagen, dose, spontaneous and induced mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, cell type, citation, and other items. In addition, information regarding the cause and effect of mutations affecting splicing is given. Routines have been developed for the analysis of single base substitutions. The p53 database contains information on nearly 5,867 mutations found in the human p53 gene. The database itself has been updated in April of 1997. The database contains information on the cancer type, loss of heterozygosity, base position, amino acid position, amino acid change, local DNA sequence,citation, and other items. Routines have been developed for the analysis of single base substitutions. The Transgenic lacZ database contains information on 405 mutations found in vivo in the transgenic lacZ gene. It has last been updated in January of 1998. It provides information on the mutagen, dose, organ, mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, citation, and other items. The Transgenic lacI database contains information on over 1700 mutations found in vivo in the transgenic lacI gene and on nearly 8000 mutations in the lacI gene in native E. coli. The database was updated in January 1998. The database contains information on the mutagen, dose, organ, mutant fraction, base position, amino acid position, amino acid change, local DNA sequence, citation, and other items. Routines have been developed for the analysis of single base substitutions for each of the databases. The software runs only on IBM-compatible PCs.
Proper citation: Neal's DNA Mutation Site (RRID:SCR_002947) Copy
The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.
Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy
The mission of ILAR is to evaluate and disseminate information on issues related to the scientific, technological, and ethical use of animals and related biological resources in research, testing, and education. Using the principles of refinement, reduction, and replacement (3Rs) as a foundation, ILAR promotes high-quality science through the humane care and use of animals and the implementation of alternatives. Through the reports of expert committees, the ILAR Journal, web-based resources, and other means of communication, ILAR functions as a component of the National Academies to provide independent, objective advice to the federal government, the international biomedical research community, and the public. ILAR supports the responsible use of animals in research, testing, and education as a key component to advancing the health and quality of life of humans and animals. It promotes high-quality science and humane care and use of research animals based upon the principles of refinement, replacement, and reduction (the 3Rs) and high ethical standards. It fosters best practices that enhance human and animal welfare by organizing and disseminating information and by facilitating dialogue among interested parties. It has developed a unique Search Engine to search for animal models and strains. This search engine surveys all the websites of vendors and repositories of laboratory animals and biological material on our Links page. The ILAR develops guidelines on laboratory animal care and use and conducts conferences, symposia, and workshops on important laboratory animal problems. ILAR publishes the ILAR Journal on a quarterly basis, as well as conference proceedings and special reports prepared by committees of experts. A list of ILAR publications on issues related to laboratory animal research is available on the Web site. As part of the Animal Models and Genetic Stocks Information Exchange Program, ILAR staff members answer direct telephone and mail inquiries and maintain a Web page containing a database on animal models and genetic stock. The Web site also offers a comprehensive search engine that enables users to find information on the existence and location of special animal models, correct nomenclature to identify animals, and related topics such as diseases of animals and relevant publications. Sponsors: ILAR receives funding from the following sponsors: -Abbott Laboratories -Abbott Fund -American College of Laboratory Animal Medicine (ACLAM) -American Society of Laboratory Animal Practitioners (ASLAP) -Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) -Bristol-Myers Squibb Co. -Charles River -Charles River Laboratories Foundation -Covance -Federation of American Societies for Experimental Biology (FASEB) -GlaxoSmithKline -Merck & Co., Inc. -National Science Foundation (NSF) -Pfizer -Scientists Center for Animal Welfare (SCAW) -U.S. Department of Agriculture (USDA) -U.S. Department of the Army -U.S. Department of Health and Human Services (DHHS) :*National Institutes of Health (NIH) :*Office of Research Integrity (ORI) -U.S. Department of the Navy -U.S. Department of Veterans Affairs -Wellcome Trust -Wyeth Pharmaceuticals
Proper citation: Institute for Laboratory Animal Research (RRID:SCR_006872) Copy
http://www.nimh.nih.gov/news/media/audio/index.shtml
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. Audio and video available from the National Institute of Mental Health (NIMH).
Proper citation: NIMH Multimedia (RRID:SCR_005467) Copy
https://community.brain-map.org/t/allen-human-reference-atlas-3d-2020-new/405
Parcellation of adult human brain in 3D, labeling every voxel with brain structure spanning 141 structures. These parcellations were drawn and adapted from prior 2D version of adult human brain atlas.
Proper citation: Allen Human Reference Atlas, 3D, 2020 (RRID:SCR_017764) Copy
https://edspace.american.edu/openbehavior/project/deepbehavior/
Project related to behavior tracking and analysis. Provides deep learning toolbox that automates taking high speed quality video to track behavior in rodents and humans.
Proper citation: DeepBehavior project (RRID:SCR_021387) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.