Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://gillisweb.cshl.edu/Primate_MTG_coexp/
We aligned single-nucleus atlases of middle temporal gyrus (MTG) of 5 primates (human, chimp, gorilla, macaque and marmoset) and identified 57 consensus cell types common to all species. We provide this resource for users to: 1) explore conservation of gene expression across primates at single cell resolution; 2) compare with conservation of gene coexpression across metazoa, and 3) identify genes with changes in expression or connectivity that drive rapid evolution of human brain.
Proper citation: Gene functional conservation across cell types and species (RRID:SCR_023292) Copy
http://chordate.bpni.bio.keio.ac.jp/faba/1.4/top.html
Image resource including ascidian's three-dimensional (3D) and cross-sectional images through the developmental time course. These images were reconstructed from more than 3,000 high-resolution real images collected by confocal laser scanning microscopy (CLSM) at newly defined 26 distinct developmental stages (stages 1-26) from fertilized egg to hatching larva, which were grouped into six periods named the zygote, cleavage, gastrula, neurula, tailbud, and larva periods. The data set will be helpful in standardizing developmental stages for morphology comparison as well as for providing guidelines for several functional studies of a body plan in chordate.
Proper citation: Four-dimensional Ascidian Body Atlas (RRID:SCR_001691) Copy
The National Science Foundation's Graduate Research Fellowship Program (GRFP) helps ensure the vitality of the human resource base of science and engineering in the United States and reinforces its diversity. The program recognizes and supports outstanding graduate students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based master's and doctoral degrees in the U.S. and abroad. The NSF welcomes applications from all qualified students and strongly encourages under-represented populations, including women, under-represented racial and ethnic minorities, and persons with disabilities, to apply for this fellowship. Fellows share in the prestige and opportunities that become available when they are selected. Fellows benefit from a three-year annual stipend of $30,000 along with a $10,500 cost of education allowance for tuition and fees, a one-time $1,000 international travel allowance and the freedom to conduct their own research at any accredited U.S., or foreign institution of graduate education they choose. NSF Fellows are anticipated to become knowledge experts who can contribute significantly to research, teaching, and innovations in science and engineering. So that the nation can build fully upon the strength and creativity of a diverse society, the Foundation welcomes applications from all qualified individuals. Women, under-represented minorites and people with disabilities are encouraged to apply. Those with disabilities are additionally accommodated by the Foundation to provide for the most successful graduate experience possible. Sponsors: This program is supported by the National Science Foundation (NSF).
Proper citation: National Science Foundation Graduate Research Fellowship Program (RRID:SCR_001487) Copy
http://neurocritic.blogspot.com/
The Neurocritic is a blog deconstructing the most sensationalistic recent findings in Human Brain Imaging, Cognitive Neuroscience, and Psychopharmacology. Born in West Virginia in 1980, The Neurocritic embarked upon a roadtrip across America at the age of thirteen with his mother. She abandoned him when they reached San Francisco and The Neurocritic descended into a spiral of drug abuse and prostitution. At fifteen, The Neurocritic''s psychiatrist encouraged him to start writing as a form of therapy.
Proper citation: Neurocritic (RRID:SCR_006528) Copy
https://bioinformatics.oxfordjournals.org/content/21/4/557.full.pdf
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. MAP-O-MAT is a web-based server for automated linkage mapping of human polymorphic DNA markers. The server uses publicly available genotype data for over 15,000 markers. It facilitates the verification of order and map distances for custom mapping sets using genotype data from the CEPH database, and from the Marshfield, SNP Consortium and Rutgers linkage maps. The CRI-MAP program is used for likelihood calculations and some mapping algorithms, and physical map positions are provided from the human genome assembly.
Proper citation: MAP-O-MAT (RRID:SCR_008197) Copy
Manually curated database offering variability and pathogenicity information about mtDNA variants. Human mitochondrial variants data of healthy and diseased subjects.Data and text mining pipeline to annotate human mitochondrial variants with functional and clinical information.
Proper citation: HmtVar (RRID:SCR_017288) Copy
http://www.humphreyslab.com/SingleCell/
Software tool as analyzer for kidney single cell datasets. Allows users to query gene expression from mouse or human kidney and human kidney organoid single cell datasets. For details about datasets visit ReBuilding a Kidney website.
Proper citation: Kidney Interactive Transcriptomics (RRID:SCR_017209) Copy
http://www.informatics.jax.org/phenotypes.shtml
Enables comparative phenotype analysis, searches for human disease models, and hypothesis generation by providing access to spontaneous, induced, and genetically engineered mutations and their strain-specific phenotypes.
Proper citation: Phenotypes and Mutant Alleles (RRID:SCR_017523) Copy
https://gitlab.com/rosen-lab/white-adipose-atlas
Single cell atlas of human and mouse white adipose tissue.
Proper citation: White Adipose Atlas (RRID:SCR_023625) Copy
http://wiki.c2b2.columbia.edu/califanolab/index.php/BCellInteractome.htm
A network of protein-protein, protein-DNA and modulatory interactions in human B cells. The network contains known interactions (reported in public databases) and predicted interactions by a Bayesian evidence integration framework which integrates a variety of generic and context specific experimental clues about protein-protein and protein-DNA interactions with inferences from different reverse engineering algorithms, such as GeneWays and ARACNE. Modulatory interactions are predicted by the MINDY, an algorithm for the prediction of modulators of transcriptional interactions (please refer to the publication section for more information). The BCI can be downloaded as one tab delimited file containing the complete network (BCI.txt) with each type of interaction explicitly defined.
Proper citation: B Cell Interactome (RRID:SCR_008655) Copy
http://www.uv.es/vista/vistavalencia/
The general goal is to achieve a deeper understanding of natural image statistics because from this knowledge it should be possible to explain the behavior of the visual cortex and propose new alternatives in a number of applications in image processing and computer vision in which the basic problem is the choice of an appropriate signal representation. The range of basic and applied topics in which we are currently working include: * Mathematical models of human vision * Statistical image models * Image distortion metrics * Image coding * Motion estimation * Video coding * Image restoration * Color representation
Proper citation: Visual Statistics Group (RRID:SCR_008317) Copy
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
Unbiased standard magnetic resonance imaging template brain volume for normal population. These volumes were created using data from ICBM project. 6 different templates are available: * ICBM 2009a Nonlinear Symmetric - template which includes T1w,T2w,PDw modalities, also T2 relaxometry (T2 values calculated for each subject using single dual echo PD/T2 scan), and tissue probabilities maps. Also included lobe atlas used for ANIMAL+INSECT segmentation, brain mask, eye mask and face mask. Intensity inhomogeneity was performed using N3 version 1.10.1. * ICBM 2009a Nonlinear Asymmetric template - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Intensity inhomogeneity was performed using N3 version 1.10.1. Also included brain mask, eye mask and face mask. * ICBM 2009b Nonlinear Symmetric - template which includes only T1w,T2w and PDw modalities. * ICBM 2009b Nonlinear Asymmetric - template which includes only T1w,T2w and PDw modalities. * ICBM 2009c Nonlinear Symmetric - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Also included lobe atlas used for ANIMAL+INSECT segmentation, brain mask, eye mask and face mask. Intensity inhomogeneity was performed using N3 version 1.11. Sampling is different from 2009a template. * ICBM 2009c Nonlinear Asymmetric template - template which includes T1w,T2w,PDw modalities, and tissue probabilities maps. Intensity inhomogeneity was performed using N3 version 1.11 Also included brain mask, eye mask and face mask.Sampling is different from 2009a template. All templates are describing the same anatomy, but sampling is different. Also, different versions of N3 algorithm produces slightly different tissue probability maps. Tools for using these atlases can be found in the Software section. Viewing the multiple atlas volumes online requires Java browser support. You may also download the templates - see licensing information.
Proper citation: ICBM 152 Nonlinear atlases version 2009 (RRID:SCR_008796) Copy
http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1
An unbiased standard magnetic resonance imaging template brain volume for pediatric data from the 4.5 to 18.5y age range. These volumes were created using data from 324 children enrolled in the NIH-funded MRI study of normal brain development (Almli et al., 2007, Evans and Group 2006). Tools for using these atlases can be found in the Software section. To view the atlases online, click on the appropriate JIV2 link in the Download section. You can download templates constructed for different age ranges. For each age range you will get an average T1w, T2w, PDw maps normalized between 0 and 100 and tissue probability maps, with values between 0 and 1. Also each age range includes a binary brain mask.
Proper citation: NIHPD Objective 1 atlases (4.5 - 18.5y) (RRID:SCR_008794) Copy
http://www.neuroethics.ubc.ca/
It is an interdisciplinary research group dedicated to tackling the ethical, legal, policy and social implications of frontier technological developments in the neurosciences. Our objective is to align innovations in the brain sciences with societal, cultural and individual human values through high impact research, education and outreach. The Core''s major research projects are focused on high impact, high visibility areas including the use of drugs and devices for neuroenhancement, ethics in neurodegenerative disease and regenerative medicine research, international and cross-cultural challenges in brain research, neuroimaging in the private sector, and the ethics of personalized medicine, among others. Members of the Core also lead initiatives aside from their research projects. Sponsors: This Core is supported by the University of Brititsh Columbia.
Proper citation: UBC National Core for Neuroethics (RRID:SCR_008063) Copy
https://www.broadinstitute.org/ccle/
A collaborative project between the Broad Institute and the Novartis Institutes for Biomedical Research and its Genomics Institute of the Novartis Research Foundation, with the goal of conducting a detailed genetic and pharmacologic characterization of a large panel of human cancer models. The CCLE also works to develop integrated computational analyses that link distinct pharmacologic vulnerabilities to genomic patterns and to translate cell line integrative genomics into cancer patient stratification. The CCLE provides public access to genomic data, analysis and visualization for about 1000 cell lines.
Proper citation: Cancer Cell Line Encyclopedia (RRID:SCR_013836) Copy
The vision of the JHU ICMIC is to combine state-of-the-art imaging capabilities with powerful molecular biology techniques to define strategies with intent to cure. It has drawn upon its human resources at JHU to create a center consisting of a multidisciplinary group of premier individuals with diverse skills focused on translating molecular capabilities into imaging possibilities with the single purpose of understanding and curing cancer. Nearly all of the investigators participating in this ICMIC have interactive collaborative projects with one or more of the other investigators. The synergism generated by the collective skills of this unique group of individuals will lead to significant advances in the understanding of cancer and its treatment. The JHU ICMIC structure consists of four interactive and closely related research components focused on hypoxia, HIF-1, and exploiting the hypoxia response element to target cancer cells through choline kinase inhibition. These research components are anchored by the participation of world renowned expertise in HIF-1. The research components utilize MR, PET and Optical Imaging technology to understand cancer vascularization, invasion and metastasis, to achieve effective cancer therapy. The center has selected developmental projects which are highly relevant to the goals of the ICMIC and interactive with the research components. Five resources devoted to adminstration, molecular biology, imaging, probes, and translational application provide the infrastructure to support the research activities of the ICMIC. Research Components in the JHU ICMIC: - Combining Anti-angiogenic therapy with siRNA targeting of choline kinase. - Imaging the Role of HIF-1 in Breast Cancer Progression - Imaging and Targeting Hypoxia in Solid Tumors - Molecular and Functional Imaging of the HER-2/neu Receptor The following are developmental projects currently taking place in ICMIC 1. Receptor imaging using nonparamagnetic MRI contrast agents (2003) 2. New imaging agents for prostate cancer (2003) 3. Non-invasive monitoring of therapeutic effect of siRNA-mediated radiation sensitization in human prostate cancer xenografts (2003) 4. Imaging of the endothelin receptor in cancer (2003) 5. Imaging studies of c-myc regulation of tumor metabolism (2003) 6. Imaging studies of anti-tumorigenic effects of anti-oxidants in vivo (2005) 7. Molecular Imaging with Magnetic Resonance Microsystems (2005) 8. Endogenous angiogenesis inhibitors (2005) 9. MR imaging and spectroscopy in detection and localization of prostate cancer: a prospective trial in patients undergoing cystoprostatectomy and radical prostatectomy. (2005) 10. A versatile visualization system for the analysis of multi-modality and multidimensional cancer imaging (2007) 11. Non-invasive imaging of CXCR4 expression in breast cancer (2007)
Proper citation: John Hopkins University, In-Vivo Cellular Molecular Imaging Center (RRID:SCR_013198) Copy
Center that is part of the NIH Library of Integrated Network-based Cellular Signatures (LINCS) Program. Its goals are to collect and disseminate data and analytical tools needed to understand how human cells respond to perturbation by drugs, the environment, and mutation.
Proper citation: HMS LINCS Center (RRID:SCR_016370) Copy
http://www.roslin.ed.ac.uk/alan-archibald/porcine-genome-sequencing-project/
Map of identifyied genes controlling traits of economic and welfare significance in the pig. The project objectives were to produce a genetic map with markers spaced at approximately 20 centiMorgan intervals over at least 90% of the pig genome; to produce a physical map with at least one distal and one proximal landmark locus mapped on each porcine chromosome arm and also genetically mapped; to develop a flow karyotype for the pig based on FACS sorted chromosomes; to develop PCR based techniques to enable rapid genotyping for polymorphic markers; to evaluate synteny conservation between pigs, man, mice and cattle; to develop and evaluate the statistical techniques required to analyze data from QTL mapping experiments and to plan and initiate the mapping of QTLs in the pig; to map loci affecting traits of economic and biological significance in the pig; and to develop the molecular tools to allow the future identification and cloning of mapped loci. Animal breeders currently assume that economically important traits such as growth, carcass composition and reproductive performance are controlled by an infinite number of genes each of infinitessimal effect. Although this model is known to be unrealistic, it has successfully underpinned the genetic improvement of livestock, including pigs, over recent decades. A map of the pig genome would allow the development of more realistic models of the genetic control of economic traits and the ultimately the identification of the major trait genes. This would allow the development of more efficient marker assisted selection which may be of particular value for traits such as disease resistance and meat quality.
Proper citation: Pig Genome Mapping (RRID:SCR_012884) Copy
http://harvester.fzk.de/harvester/
Harvester is a Web-based tool that bulk-collects bioinformatic data on human proteins from various databases and prediction servers. It is a meta search engine for gene and protein information. It searches 16 major databases and prediction servers and combines the results on pregenerated HTML pages. In this way Harvester can provide comprehensive gene-protein information from different servers in a convenient and fast manner. As full text meta search engine, similar to Google trade mark, Harvester allows screening of the whole genome proteome for current protein functions and predictions in a few seconds. With Harvester it is now possible to compare and check the quality of different database entries and prediction algorithms on a single page. Sponsors: This work has been supported by the BMBF with grants 01GR0101 and 01KW0013.
Proper citation: Bioinformatic Harvester IV (beta) at Karlsruhe Institute of Technology (RRID:SCR_008017) Copy
https://www.amazon.com/How-Brain-Works-Mark-Dubin/dp/0632044411
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Is the Brain (Like) a Computer is an e-book written by Prof. Mark Dubin. It consists of the following: Introduction. Why do we consider the relationship of brains and computers and what does this have to do with consciousness? What's a Brain Made Of? A thought experiment. Test Drive a Turing Machine. A theoretical approach. Interim Summary. Many of the main pages have links to additional information. When you click on one of those links a NEW page will open ON TOP of the page you are clicking from. This convention is adopted so that you can look at the additional information and then easily return to the main page you got there from.
Proper citation: Is the Brain (Like) a Computer (RRID:SCR_008809) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.