Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 17 showing 321 ~ 340 out of 522 results
Snippet view Table view Download 522 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002256

    This resource has 1+ mentions.

http://research.nhgri.nih.gov/dog_genome/

The Dog Genome Project at the National Human Genome Research Institute is working to develop resources necessary to map and clone canine genes in an effort to utilize dogs as a model system for genetics and cancer research. The US National Human Genome Research Institute (NHGRI) agreed to fund a project to sequence the entire genome of a boxer dog named Tasha, because it recognized the value of the dog as an unrivaled model for the study of human disease. The National Human Genome Research Institute (NHGRI) led the National Institutes of Health's (NIH) contribution to the International Human Genome Project, which had as its primary goal the sequencing of the human genome. This project was successfully completed in April 2003. Now, the NHGRI's mission has expanded to encompass a broad range of studies aimed at understanding the structure and function of the human genome and its role in health and disease. To that end NHGRI supports the development of resources and technology that will accelerate genome research and its application to human health. A critical part of the NHGRI mission continues to be the study of the ethical, legal and social implications (ELSI) of genome research. NHGRI also supports the training of investigators and the dissemination of genome information to the public and to health professionals.

Proper citation: NHGRI Dog Genome Project (RRID:SCR_002256) Copy   


http://www.allgenes.org/

DoTS (Database Of Transcribed Sequences) is a human and mouse transcript index created from all publicly available transcript sequences. The input sequences are clustered and assembled to form the DoTS Consensus Transcripts that comprise the index. These transcripts are assigned stable identifiers of the form DT.123456 (and are often referred to as dots). The transcripts are in turn clustered to form putative DoTS Genes. These are assigned stable identifiers of the form DG.1234356. As of September 1, 2004, the DoTS annotation team has manually annotated 43,164 human and 78,054 mouse DoTS Transcripts (DTs), corresponding to 3,939 human and 7,752 mouse DoTS Genes (DGs). Use the manually annotated gene query to see the DoTS Transcripts that have been manually annotated. The focus of the DoTS project is integrating the various types of data (e.g., EST sequences, genomic sequence, expression data, functional annotation) in a structured manner which facilitates sophisticated queries that are otherwise not easy to perform. DoTS is built on the GUS Platform which includes a relational database that uses controlled vocabularies and ontologies to ensure that biologically meaningful queries can be posed in a uniform fashion. An easy way to start using the site is to search for DoTS Transcripts using an existing cDNA or mRNA sequence. Click on the BLAST tab at the top of the page and enter your sequence in the form provided. All the transcripts with significant sequence similarity to your query sequence will be displayed. Or use one of the provided queries to retrieve transcripts using a number of criteria. These queries are listed on the query page, which can also be reached by clicking on the tab marked query at the top of the page. Finally, the boolean query page allows these queries to be combined in a variety of ways. Sponsors: Funding provided by -NIH grant RO1-HG-01539-03 -DOE grant DE-FG02-00ER62893

Proper citation: Database of Transcribed Sequences (RRID:SCR_002334) Copy   


http://sonorus.princeton.edu/hefalmp/

HEFalMp (Human Experimental/FunctionAL MaPper) is a tool developed by Curtis Huttenhower in Olga Troyanskaya's lab at Princeton University. It was created to allow interactive exploration of functional maps. Functional mapping analyzes portions of these networks related to user-specified groups of genes and biological processes and displays the results as probabilities (for individual genes), functional association p-values (for groups of genes), or graphically (as an interaction network). HEFalMp contains information from roughly 15,000 microarray conditions, over 15,000 publications on genetic and physical protein interactions, and several types of DNA and protein sequence analyses and allows the exploration of over 200 H. sapiens process-specific functional relationship networks, including a global, process-independent network capturing the most general functional relationships. Looking to download functional maps? Keep an eye on the bottom of each page of results: every functional map of any kind is generated with a Download link at the bottom right. Most functional maps are provided as tab-delimited text to simplify downstream processing; graphical interaction networks are provided as Support Vector Graphics files, which can be viewed using the Adobe Viewer, any recent version of Firefox, or the excellent open source Inkscape tool.

Proper citation: Human Experimental/FunctionAL MaPper: Providing Functional Maps of the Human Genome (RRID:SCR_003506) Copy   


  • RRID:SCR_021414

https://github.com/aarac/DeepBehavior

Software toolbox that automates taking high speed quality video to track behavior to analyze and track behavior in rodents and humans.

Proper citation: DeepBehavior (RRID:SCR_021414) Copy   


http://blocks.fhcrc.org/blocks/codehop.html

This COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy has been implemented as a computer program that is accessible over the World-Wide Web and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences. This is a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to product molecules. The researchers demonstrate the practical utility of this hybrid primer method by detection of diverse reverse transcriptase-like genes in a human genome, and by detection of C5 DNA methyltransferase homologs in various plant DNAs. In each case, amplified products were sufficiently pure to be cloned without gel fractionation. Sponsors: This work was supported in part by a grant from the M. J. Murdock Charitable Trust and by a grant from NIH. S. P. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation.

Proper citation: COnsensus-DEgenerate Hybride Oligonucleotide Primers (RRID:SCR_002875) Copy   


http://coot.embl.de/g2d/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.

Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy   


  • RRID:SCR_007294

    This resource has 10+ mentions.

http://neibank.nei.nih.gov

An integrated resource for genomics and bioinformatics in vision research including expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. The data can be interrogated in several ways. Specific gene names can be entered into the search window. Alternatively, regions of the genome can be displayed. For example, entering two STS markers separated by a semicolon (e.g. RH18061;RH80175) allows the display of the entire chromosomal region associated with the mapping of a specific disease locus. ESTs for each tissue can then be displayed to help in the selection of candidate genes. In addition, sequences can be entered into a BLAST search and rapidly aligned on the genome, again showing eye derived ESTs for the same region. To see the same region at the full UCSC site, cut and paste the location from the position window of the genome browser. EyeBrowse includes a custom track display SAGE data for human eye tissues derived from the EyeSAGE project. The track shows the normalized sum of SAGE tag counts from all published eye-related SAGE datasets centered on the position of each identifiable Unigene cluster. This indicates relative activity of each gene locus in eye. Clicking on the vertical count bar for a particular location will bring up a display listing gene details and linking to specific SAGE counts for each eye SAGE library and comparisons with normalized sums for neural and non-neural tissues. To view or alter settings for the EyeSAGE track on EyeBrowse, click on the vertical gray bar at the left of the display. Other custom tracks display known eye disease genes and mapped intervals for candidate loci for retinal disease, cataract, myopia and cornea disease. These link back to further information at NEIBank.

Proper citation: NEIBank (RRID:SCR_007294) Copy   


http://www.bic.mni.mcgill.ca/

Center dedicated to understanding and treatment of neurological diseases by creating and using imaging methods to study human nervous system. Dedicated to research imaging of human brain. Brain structure is imaged using anatomical Magnetic Resonance Imaging (aMRI) while brain physiology is imaged using Positron Emission Tomography (PET), Magnetic Resonance Spectroscopy (MRS), functional MRI (fMRI) and magnetoencephalography (MEG). BIC maintains linkages with clinical, clinical research and basic research communities within Montreal Neurological Institute (MNI), McGill University and has collaborations across Quebec, Canada, USA and internationally.

Proper citation: McConnell Brain Imaging Center (RRID:SCR_008364) Copy   


  • RRID:SCR_007349

    This resource has 10+ mentions.

http://www.nihclinicalcollection.com

A plated array of approximately 450 small molecules that have a history of use in human clinical trials. The collection was assembled by the National Institutes of Health (NIH) through the Molecular Libraries Roadmap Initiative as part of its mission to enable the use of compound screens in biomedical research. Similar collections of FDA approved drugs have proven to be rich sources of undiscovered bioactivity and therapeutic potential. The clinically tested compounds in the NCC are highly drug-like with known safety profiles. These compounds can provide excellent starting points for medicinal chemistry optimization and, for high-affinity targets, may even be appropriate for direct human use in new disease areas.

Proper citation: NIH Clinical Collection (RRID:SCR_007349) Copy   


  • RRID:SCR_006798

    This resource has 1000+ mentions.

http://neurosynth.org

Platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data extracted from published articles. It''s a website wrapped around a set of open-source Python and JavaScript packages. Neurosynth lets you run crude but useful analyses of fMRI data on a very large scale. You can: * Interactively visualize the results of over 3,000 term-based meta-analyses * Select specific locations in the human brain and view associated terms * Browse through the nearly 10,000 studies in the database Their ultimate goal is to enable dynamic real-time analysis, so that you''ll be able to select foci, tables, or entire studies for analysis and run a full-blown meta-analysis without leaving your browser. You''ll also be able to do things like upload entirely new images and obtain probabilistic estimates of the cognitive states most likely to be associated with the image.

Proper citation: NeuroSynth (RRID:SCR_006798) Copy   


  • RRID:SCR_012734

    This resource has 500+ mentions.

http://www.grc.nia.nih.gov/

A research program of the NIA which focuses on neuroscience, aging biology, and translational gerontology. The central focus of the program's research is understanding age-related changes in physiology and the ability to adapt to environmental stress, and using that understanding to develop insight about the pathophysiology of age-related diseases. The IRP webpage provides access to other NIH resources such as the Biological Biochemical Image Database, the Bioinformatics Portal, and the Baltimore Longitudinal Study of Aging.

Proper citation: Intramural Research Program (RRID:SCR_012734) Copy   


http://www.cdc.gov/genomics/hugenet/default.htm

Human Genome Epidemiology Network, or HuGENet, is a global collaboration of individuals and organizations committed to the assessment of the impact of human genome variation on population health and how genetic information can be used to improve health and prevent disease. Its goals include: establishing an information exchange that promotes global collaboration in developing peer-reviewed information on the relationship between human genomic variation and health and on the quality of genetic tests for screening and prevention; providing training and technical assistance to researchers and practitioners interested in assessing the role of human genomic variation on population health and how such information can be used in practice; developing an updated and accessible knowledge base on the World Wide Web; and promoting the use of this knowledge base by health care providers, researchers, industry, government, and the public for making decisions involving the use of genetic information for disease prevention and health promotion. HuGENet collaborators come from multiple disciplines such as epidemiology, genetics, clinical medicine, policy, public health, education, and biomedical sciences. Currently, there are 4 HuGENet Coordinating Centers for the implementation of HuGENet activities: CDC''s Office of Public Health Genomics, Atlanta, Georgia; HuGENet UK Coordinating Center, Cambridge, UK; University of Ioannina, Greece; University of Ottawa , Ottawa, Canada. HuGENet includes: HuGE e-Journal Club: The HuGE e-Journal Club is an electronic discussion forum where new human genome epidemiologic (HuGE) findings, published in the scientific literature in the CDC''s Office of Public Health Genomics Weekly Update, will be abstracted, summarized, presented, and discussed via a newly created HuGENet listserv. HuGE Reviews: A HuGE Review identifies human genetic variations at one or more loci, and describes what is known about the frequency of these variants in different populations, identifies diseases that these variants are associated with and summarizes the magnitude of risks and associated risk factors, and evaluates associated genetic tests. Reviews point to gaps in existing epidemiologic and clinical knowledge, thus stimulating further research in these areas. HuGE Fact Sheets: HuGE Fact Sheets summarize information about a particular gene, its variants, and associated diseases. HuGE Case Studies: An on-line presentation designed to sharpen your epidemiological skills and enhance your knowledge on genomic variation and human diseases. Its purpose is to train health professionals in the practical application of human genome epidemiology (HuGE), which translates gene discoveries to disease prevention by integrating population-based data on gene-disease relationships and interventions. Students will acquire conceptual and practical tools for critically evaluating the growing scientific literature in specific disease areas. HUGENet Publications: Articles related to the HuGENet movement written by our HuGENet collaborators. HuGE Navigator: An integrated, searchable knowledge base of genetic associations and human genome epidemiology, including information on population prevalence of genetic variants, gene-disease associations, gene-gene and gene- environment interactions, and evaluation of genetic tests. HuGE Workshops: HuGENet has sponsored meetings and workshops with national and international partners since 2001. Available are detailed summaries, agendas or the ability to download speaker slides. HuGE Book: Human Genome Epidemiology: A Scientific Foundation for Using Genetic Information to Improve Health and Prevent Disease. (The findings and conclusions in this book are those of the author(s) and do not necessarily represent the views of the funding agency.) HuGENet Collaborators: HuGENet is interested in establishing collaborations with individuals and organizations working on population based research involving genetic information. HuGE Funding: Funding opportunities for specific population-based genetic epidemiology research projects are available. Research initiatives whose aims include assessing the prevalence of human genetic variation, the association between genetic variants and human diseases, the measurement of gene-gene or gene-environment interaction, and the evaluation of genetic tests for screening and prevention are compiled to create a posted listing. Additional information and application details can be found by clicking on the respective links.

Proper citation: Human Genome Epidemiology Network (RRID:SCR_013117) Copy   


  • RRID:SCR_012956

    This resource has 100+ mentions.

https://commonfund.nih.gov/hmp/

NIH Project to generate resources to characterize the human microbiota and to analyze its role in human health and disease at several different sites on the human body, including nasal passages, oral cavities, skin, gastrointestinal tract, and urogenital tract using metagenomic and traditional approach to genomic DNA sequencing studies.HMP was supported by the Common Fund from 2007 to 2016.

Proper citation: Human Microbiome Project (RRID:SCR_012956) Copy   


  • RRID:SCR_016770

    This resource has 100+ mentions.

http://ophid.utoronto.ca/mirDIP/

microRNA data integration portal to find microRNAs that target a gene, or genes targeted by a microRNA, in Homo sapiens. Software to integrate prediction databases to elucidate accurate microRNA:target relationships. Used for human microRNA prediction studies.

Proper citation: mirDIP (RRID:SCR_016770) Copy   


  • RRID:SCR_014966

    This resource has 5000+ mentions.

Ratings or validation data are available for this resource

https://www.gencodegenes.org

Human and mouse genome annotation project which aims to identify all gene features in the human genome using computational analysis, manual annotation, and experimental validation.

Proper citation: GENCODE (RRID:SCR_014966) Copy   


  • RRID:SCR_016925

    This resource has 10+ mentions.

https://www.4dnucleome.org

Research project to understand the principles underlying nuclear organization in space and time, the role nuclear organization plays in gene expression and cellular function, and how changes in nuclear organization affect normal development and diseases. Portal provides free access to datasets, software packages, and protocols to advance biomedical research of nuclear architecture. Aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes.

Proper citation: 4D Nucleome (RRID:SCR_016925) Copy   


  • RRID:SCR_018535

    This resource has 10+ mentions.

http://www.proteometools.org/index.php?id=home

Project for building molecular and digital tools from human proteome to facilitate biomedical research, drug discovery, personalized medicine and life science research.

Proper citation: ProteomeTools (RRID:SCR_018535) Copy   


  • RRID:SCR_017274

https://www.accegen.com/

AcceGen offers most complete human and animal cell products and cell/molecular biology services for life science researchers worldwide. Cell line collections include primary cells, tumor cell lines, transfected stable cell lines, stem cells and immortalized cell lines. miRNA agomir/antagomir, nucleic acid kits, enzymes and custom cell/molecular biology services.

Proper citation: AcceGen Biotech (RRID:SCR_017274) Copy   


http://crbs.ucsd.edu/

CRBS is a UCSD organized research unit (ORU) that exists to provide human resources, high technology equipment, and administrative services to researchers engaged in fundamental research on cell structure and function relationships in central nervous system processes, cardiovascular networking, and muscular contraction through multiple scales and modalities. CRBS scientists investigate these processes through invention, refinement, and deployment of sophisticated technologies, especially: - High-powered electron microscopes that reveal three-dimensional cell structures - State-of-the-art X-ray crystallography and magnetic resonance analysis that provide detail on protein structures at high-resolution - Laser-scanning and confocal light microscopes that reveal molecules tagged with fluorescent markers as they traffic within cells and pass transfer signals within and between cells - High performance computing and grid-based integration of distributed data CRBS facilitates an interdisciplinary infrastructure in which people from biology, medicine, chemistry, and physics can work with those from computer science and information technologies in collaborative research. Researchers share interests in the study of complex biological systems at many scales, from the structures of enzymes, proteins, and the body's chemical communications network at atomic and molecular levels, to an organism's physiology, strength, and support at cellular and tissue levels. The CRBS infrastructure integrates resources for high-performance computing, visualization, and database technologies, and the grid-integration of large amounts of archival storage data. The California Institute for Telecommunications and Information Technology (Cal-IT2) and the San Diego Supercomputer Center (SDSC) are collaborators in simulating the activity of biological systems, analyzing the results, and organizing the growing storehouse of biological information. CRBS is an entity evolving as research evolves. It forges interactions with biotechnology and biocomputing companies for technology transfer. Interaction, collaboration, and multiscale research produce new perspectives, reveal fruitful research topics, lead to the development of new technologies and drugs, and train a new generation of researchers in biological systems. Sponsors: CRBS is supported by the University of California at San Diego.

Proper citation: Center for Research in Biological Systems (RRID:SCR_002666) Copy   


http://www.semel.ucla.edu/creativity/

The purpose of this center is to study the molecular, cellular, systems and cognitive mechanisms that result in cognitive enhancements and explain unusual levels of performance in gifted individuals, including extraordinary creativity. Additionally, by understating the mechanisms responsible for enhancements in performance we may be better suited to intervene and reverse disease states that result in cognitive deficits. One of the key topics addressed by the Center is the biological basis of cognitive enhancements, a topic that can be studied in human subjects and animal models. In the past much of the focus in the brain sciences has been on the study of brain mechanisms that degrade cognitive performance (for example, on mutations or other lesions that cause cognitive deficits). The Tennenbaum Center for the Biology of Creativity at UCLA enables an interdisciplinary team of leading scientists to advance knowledge about the biological bases of creativity. Starting with a pilot project program, a series of investigations was launched, spanning disciplines from basic molecular biology to cognitive neuroscience. Because the concept of creativity is multifaceted, initial efforts targeted refinement of the component processes necessary to generate novel, useful cognitive products. The identified core cognitive processes: 1.) Novelty Generation the ability to flexibly and adaptively generate products that are unique; 2.) Working Memory and Declarative Memory the ability to maintain, and then use relevant information to guide goal-directed performance, along with the capacity to store and retrieve this information; and 3.) Response Inhibition the ability to suppress habitual plans and substitute alternate actions in line with changing problem-solving demands. To study the basic mechanisms underlying these complex brain functions we use translational strategies. Starting from foundational studies in basic neuroscience, we forged an interdisciplinary strategy that permits the most advanced techniques for genetic manipulation and basic neurobiological research to be applied in close collaboration with human studies that converge on the same core cognitive processes. Our integrated research program aims to reveal the genetic architecture and fundamental brain mechanisms underlying creative cognition. The work holds enormous promise for both enhancing healthy cognitive performance and designing new treatments for diverse cognitive disorders. Sponsors: The Tennenbaum Center for the Biology of Creativity was inspired by the vision and generosity of Michael Tennenbaum.

Proper citation: Tennenbaum Center for the Biology of Creativity (RRID:SCR_000668) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X