Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
ITFP is an integrated transcription factor (TF) platform, which included abundant TFs and targets message of mammalian. Support vector machine (SVM) algorithm combined with error-correcting output coding (ECOC) algorithm was utilized to identify and classify transcription factor from protein sequence of Human, Mouse and Rat. For transcription factor targets, a reverse engineering method named ARACNE was used to derive potential interaction pairs between transcription factor and downstream regulated gene from Human, Mouse and Rat gene expression profile data. Detailed information of gene expression profile data can be found in help page. Moreover, all data provided by the platform is free for non-commercial users and can be downloaded through links on help page.
Proper citation: Intergrated Transcription Factor Platform (RRID:SCR_008119) Copy
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?iter
ITER is a toxicology data file on the National Library of Medicine''s (NLM) Toxicology Data Network. It contains data in support of human health risk assessments. It is compiled by Toxicology Excellence for Risk Assessment (TERA) and contains over 600 chemical records with key data from the Agency for Toxic Substances & Disease Registry (ATSDR), Health Canada, National Institute of Public Health & the Environment (RIVM) - The Netherlands, U.S. Environmental Protection Agency (EPA), and independent parties whose risk values have undergone peer review. ITER provides a comparison of international risk assessment information in a side-by-side format and explains differences in risk values derived by different organizations. ITER data, focusing on hazard identification and dose-response assessment, is extracted from each agencys assessment and contains links to the source documentation. Among the key data provided in ITER are ATSDRs minimal risk levels; Health Canadas tolerable intakes/concentrations and tumorigenic doses/concentrations; EPAs carcinogen classifications, unit risks, slope factors, oral reference doses, and inhalation reference concentrations; RIVMs maximum permissible risk levels; NSF International''s reference doses and carcinogen risk levels, IARC''s cancer classifications, and noncancer and/or cancer risk values (that have undergone peer review) derived by independent parties. Users can search by chemical or other name, chemical name fragment, or Chemical Abstracts Service Registry Number(RN), and/or subject terms. Search results can easily be viewed, printed or downloaded. Search results are displayed in relevancy ranked order. Users may select to display exact term matches, complete records, or any combination of data from the following broad groupings: -Noncancer Oral -Cancer Oral -Noncancer Inhalation -Cancer Inhalation
Proper citation: International Toxicity Estimates for Risk (RRID:SCR_008196) Copy
The MIPS mammalian protein-protein interaction database (MPPI) is a new resource of high-quality experimental protein interaction data in mammals. The content is based on published experimental evidence that has been processed by human expert curators. It is a collection of manually curated high-quality PPI data collected from the scientific literature by expert curators. We took great care to include only data from individually performed experiments since they usually provide the most reliable evidence for physical interactions. To suit different users needs we provide a variety of interfaces to search the database: -Expert interface Simple but powerful boolean query language. -PPI search form Easy to use PPI search -Protein search Just find proteins of interest in the database Sponsors: This work is funded by a grant from the German Federal Ministry of Education and Research.
Proper citation: MIPS Mammalian Protein-Protein Interaction Database (RRID:SCR_008207) Copy
http://www.ebi.ac.uk/asd/altsplice/index.html
AltSplice is a computer generated high quality data set of human transcript-confirmed splice patterns, alternative splice events, and the associated annotations. This data is being integrated with other data that is generated by other members of the ASD consortium. The ASD project will provide the following in its three year duration: -human curated database of alternative spliced genes and their properties -a computer generated database of alternatively spliced genes and their properties -the integration of the above and newly found knowledge in a user-friendly interface and research workbench for both bioinformaticists and biologists -DNA chips that are based on the data in the above databases -the DNA chips will be used to test against predisposition for and diagnoses of human diseases ASD aims to analyse this mechanism on a genome-wide scale by creating a database that contains all alternatively spliced exons from human, and other model species. Disease causing mutations seem to induce aberrations in the process of splicing and its regulation. The ASD consortium will develop a DNA microarray (chip) that contains cDNAs of all the splicing regulatory proteins and their isoforms, as well as a chip that contains a number of disease relevant genes. We will concentrate on three models of disease (breast cancer, FTDP-17, male infertility) in which a connection between mis-splicing and a pathological state has been observed. Finally, these chips will be developed as demonstrative kits to detect predisposition for and diagnosis of such diseases. Categories: Nucleotide Sequences: Gene Structure, Introns and Exons, & Splice Sites Databases
Proper citation: AltSplice Database of Alternative Spliced Events (RRID:SCR_008162) Copy
A database, catalog and index to the collections of the National Agricultural Library, as well as a primary public source for world-wide access to agricultural information. This database resource covers materials in all formats and periods, including printed works from as far back as the 15th century. AGRICOLA is a bibliographic database of citations to the agricultural literature created by the National Agricultural Library and its cooperators. The records describe publications and resources encompassing all aspects of agriculture and allied disciplines, including animal and veterinary sciences, entomology, plant sciences, forestry, aquaculture and fisheries, farming and farming systems, agricultural economics, extension and education, food and human nutrition, and earth and environmental sciences. Although the NAL Catalog (AGRICOLA) does not contain the text of the materials it cites, thousands of its records are linked to full-text documents online, with new links added daily. The NAL Catalog (AGRICOLA) is organized into two bibliographic data sets: *The NAL Online Public Access Catalog (AGRICOLA NAL) contains citations to books, audiovisuals, serials, and other materials, most of which are in the Library''s collection. (The Catalog does contain some records for items not held at NAL.) *The Article Citation Database (AGRICOLA IND) includes citations, many with abstracts, to journal articles (see Journals Indexed in AGRICOLA), book chapters, reports, and reprints, selected primarily from the materials found in the NAL Catalog.
Proper citation: AGRICOLA (RRID:SCR_008158) Copy
http://mips.gsf.de/services/genomes/uwe25/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. This is the official database of the environmental chlamydia genome project. This resource provides access to finished sequence for Parachlamydia-related symbiont UWE25 and to a wide range of manual annotations, automatical analyses and derived datasets. Functional classification and description has been manually annotated according to the Annotation guidelines. Chlamydiae are the major cause of preventable blindness and sexually transmitted disease. Genome analysis of a chlamydia-related symbiont of free-living amoebae revealed that it is twice as large as any of the pathogenic chlamydiae and had few signs of recent lateral gene acquisition. We showed that about 700 million years ago the last common ancestor of pathogenic and symbiotic chlamydiae was already adapted to intracellular survival in early eukaryotes and contained many virulence factors found in modern pathogenic chlamydiae, including a type III secretion system. Ancient chlamydiae appear to be the originators of mechanisms for the exploitation of eukaryotic cells. Environmental chlamydiae have recently been recognized as obligate endosymbionts of free-living amoebae and have been implicated as potential human pathogens. Environmental chlamydiae form a deep branching evolutionary lineage within the medically important order Chlamydiales. Despite their high diversity and ubiquitous distribution in clinical and environmental samples only limited information about genetics and ecology of these microorganisms is available. The Parachlamydia-related Acanthamoeba symbiont UWE25 was therefore selected as representative environmental chlamydia strain for whole genome sequencing. Comparative genome analysis was performed using PEDANT and simap. Sponsors: The environmental chlamydia genome project was funded by the bmb+f (German Federal Ministry of Education and Research) and is part of the Competence Network PathoGenoMiK.
Proper citation: Protochlamydia amoebophila UWE25 (RRID:SCR_008222) Copy
http://mpr.nci.nih.gov/MPR/BrowseProteins.aspx
THIS RESOURCE IS NO LONGER IN SERVICE, documented on 6/24/13. A repository of information on commercially available phospho-specific antibodies to human phosphorylation sites. It provides a BLAST search for phosphorylation sites using as query the amino acid sequence surrounding the site. It also provides direct links to the relevant antibodies from many companies including BD Pharmingen, Biosource International, Cell Signaling Technology (CST), Santa Cruz Biotechnologies, Upstate Biotechnology.
Proper citation: Mammalian Phosphorylation Resource (RRID:SCR_008210) Copy
http://chromium.lovd.nl/LOVD2/home.php?select_db=CDKN2A
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The CDKN2A Database presents the germline and somatic variants of the CDKN2A tumor suppressor gene recorded in human disease through June 2003, annotated with evolutionary, structural, and functional information, in a format that allows the user to either download it or manipulate it for their purposes online. The goal is to provide a database that can be used as a resource by researchers and geneticists and that aids in the interpretation of CDKN2A missense variants. Most online mutation databases present flat files that cannot be manipulated, are often incomplete, and have varying degrees of annotation that may or may not help to interpret the data. They hope to use CDKN2A as a prototype for integrating computational and laboratory data to help interpret variants in other cancer-related genes and other single nucleotide polymorphisms (SNPs) found throughout the genome. Another goal of the lab is to interpret the functional and disease significance of missense variants in cancer susceptibility genes. Eventually, these results will be relevant to the interpretation of single nucleotide polymorphisms (SNPs) in general. The CDKN2A locus is a valuable model for assessing relationships among variation, structure, function, and disease because: Variants of this gene are associated with hereditary cancer: Familial Melanoma (and related syndromes); somatic alterations play a role in carcinogenesis; allelic variants occur whose functional consequences are unknown; reliable functional assays exist; and crystal structure is known. All variants in the database are recorded according to the nomenclature guidelines as outlined by the Human Genome Variation Society. This database is currently designed for research purposes only and is not yet recommended as a clinical resource. Many of the mutations reported here have not been tested for disease association and may represent normal, non-disease causing polymorphisms.
Proper citation: CDKN2A Database (RRID:SCR_008179) Copy
http://jbirc.jbic.or.jp/hinv/ppi/
The PPI view displays H-InvDB human protein-protein interaction (PPI) information. It is constructed by assigning interaction data to H-InvDB proteins which were originally predicted from transcriptional products generated by the H-Invitational project. The PPI view is now providing 32,198 human PPIs comprised of 9,268 H-InvDB proteins. H-Invitational Database (H-InvDB) is an integrated database of human genes and transcripts. By extensive analyses of all human transcripts, we provide curated annotations of human genes and transcripts that include gene structures, alternative splicing isoforms, non-coding functional RNAs, protein functions, functional domains, sub-cellular localizations, metabolic pathways, protein 3D structure, genetic polymorphisms (SNPs, indels and microsatellite repeats) , relation with diseases, gene expression profiling, molecular evolutionary features, protein-protein interactions (PPIs) and gene families/groups. Sponsors: This research is financially supported by the Ministry of Economy, Trade and Industry of Japan (METI), the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Japan Biological Informatics Consortium (JBIC). Also, this work is partly supported by the Research Grant for the RIKEN Genome Exploration Research Project from MEXT to Y.H. and the Grant for the RIKEN Frontier Research System, Functional RNA research program.
Proper citation: H-Invitational Database: Protein-Protein Interaction Viewer (RRID:SCR_008054) Copy
http://aws.amazon.com/1000genomes/
A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.
Proper citation: 1000 Genomes Project and AWS (RRID:SCR_008801) Copy
http://www.cs.tau.ac.il/~shlomito/tissue-net/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. Network visualizations in which the expression and predicted flux data are projected over the global human network. These network visualizations are accessible through the supplemental website using the publicly available Cytoscape software (Cline, Smoot et al. 2007). Since many high degree nodes exist in the network, special layouts are required to produce network visualizations that are readily interpretable. To this end we produced network visualizations in which hub nodes are repeated multiple times and hence layouts with a small number of edge crossings can be generated. Contains entries for brain compartments and brain pathways.
Proper citation: Network-based Prediction of Human Tissue-specific Metabolism (RRID:SCR_007392) Copy
https://confluence.crbs.ucsd.edu/display/NIF/StemCellInfo
Data tables providing an overview of information about stem cells that have been derived from mice and humans. The tables summarize published research that characterizes cells that are capable of developing into cells of multiple germ layers (i.e., multipotent or pluripotent) or that can generate the differentiated cell types of another tissue (i.e., plasticity) such as a bone marrow cell becoming a neuronal cell. The tables do not include information about cells considered progenitor or precursor cells or those that can proliferate without the demonstrated ability to generate cell types of other tissues. The tables list the tissue from which the cells were derived, the types of cells that developed, the conditions under which differentiation occurred, the methods by which the cells were characterized, and the primary references for the information.
Proper citation: National Institutes of Health Stem Cell Tables (RRID:SCR_008359) Copy
Database for identifying orthologous phenotypes (phenologs). Mapping between genotype and phenotype is often non-obvious, complicating prediction of genes underlying specific phenotypes. This problem can be addressed through comparative analyses of phenotypes. We define phenologs based upon overlapping sets of orthologous genes associated with each phenotype. Comparisons of >189,000 human, mouse, yeast, and worm gene-phenotype associations reveal many significant phenologs, including novel non-obvious human disease models. For example, phenologs suggest a yeast model for mammalian angiogenesis defects and an invertebrate model for vertebrate neural tube birth defects. Phenologs thus create a rich framework for comparing mutational phenotypes, identify adaptive reuse of gene systems, and suggest new disease genes. To search for phenologs, go to the basic search page and enter a list of genes in the box provided, using Entrez gene identifiers for mouse/human genes, locus ids for yeast (e.g., YHR200W), or sequence names for worm (e.g., B0205.3). It is expected that this list of genes will all be associated with a particular system, trait, mutational phenotype, or disease. The search will return all identified model organism/human mutational phenotypes that show any overlap with the input set of the genes, ranked according to their hypergeometric probability scores. Clicking on a particular phenolog will result in a list of genes associated with the phenotype, from which potential new candidate genes can identified. Currently known phenotypes in the database are available from the link labeled ''Find phenotypes'', where the associated gene can be submitted as queries, or alternately, can be searched directly from the link provided.
Proper citation: Phenologs (RRID:SCR_005529) Copy
This database presents the entire DNA sequence of the first diploid genome sequence of a Han Chinese, a representative of Asian population. The genome, named as YH, represents the start of YanHuang Project, which aims to sequence 100 Chinese individuals in 3 years. It was assembled based on 3.3 billion reads (117.7Gbp raw data) generated by Illumina Genome Analyzer. In total of 102.9Gbp nucleotides were mapped onto the NCBI human reference genome (Build 36) by self-developed software SOAP (Short Oligonucleotide Alignment Program), and 3.07 million SNPs were identified. The personal genome data is illustrated in a MapView, which is powered by GBrowse. A new module was developed to browse large-scale short reads alignment. This module enabled users track detailed divergences between consensus and sequencing reads. In total of 53,643 HGMD recorders were used to screen YH SNPs to retrieve phenotype related information, to superficially explain the donor's genome. Blast service to align query sequences against YH genome consensus was also provided.
Proper citation: YanHuang Project (RRID:SCR_006077) Copy
A publicly available database of Transposed elements (TEs) which are located within protein-coding genes of 7 organisms: human, mouse, chicken, zebrafish, fruilt fly, nematode and sea squirt. Using TranspoGene the user can learn about the many aspects of the effect these TEs have on their hosting genes, such as: exonization events (including alternative splicing-related data), insertion of TEs into introns, exons, and promoters, specific location of the TE over the gene, evolutionary divergence of the TE from its consensus sequence and involvement in diseases. TranspoGene database is quickly searchable through its website, enables many kinds of searches and is available for download. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. The TranspoGene and microTranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome.
Proper citation: TranspoGene (RRID:SCR_005634) Copy
http://www.hpppi.iicb.res.in/btox/
Database of Bacterial ExoToxins for Human is a database of sequences, structures, interaction networks and analytical results for 229 exotoxins, from 26 different human pathogenic bacterial genus. All toxins are classified into 24 different Toxin classes. The aim of DBETH is to provide a comprehensive database for human pathogenic bacterial exotoxins. DBETH also provides a platform to its users to identify potential exotoxin like sequences through Homology based as well as Non-homology based methods. In homology based approach the users can identify potential exotoxin like sequences either running BLASTp against the toxin sequences or by running HMMER against toxin domains identified by DBETH from human pathogenic bacterial exotoxins. In Non-homology based part DBETH uses a machine learning approach to identify potential exotoxins (Toxin Prediction by Support Vector Machine based approach).
Proper citation: DBETH - Database for Bacterial ExoToxins for Humans (RRID:SCR_005908) Copy
The Kabat Database determines the combining site of antibodies based on the available amino acid sequences. The precise delineation of complementarity determining regions (CDR) of both light and heavy chains provides the first example of how properly aligned sequences can be used to derive structural and functional information of biological macromolecules. The Kabat database now includes nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules, and other proteins of immunological interest. The Kabat Database searching and analysis tools package is an ASP.NET web-based portal containing lookup tools, sequence matching tools, alignment tools, length distribution tools, positional correlation tools and much more. The searching and analysis tools are custom made for the aligned data sets contained in both the SQL Server and ASCII text flat file formats. The searching and analysis tools may be run on a single PC workstation or in a distributed environment. The analysis tools are written in ASP.NET and C# and are available in Visual Studio .NET 2003/2005/2008 formats. The Kabat Database was initially started in 1970 to determine the combining site of antibodies based on the available amino acid sequences at that time. Bence Jones proteins, mostly from human, were aligned, using the now-known Kabat numbering system, and a quantitative measure, variability, was calculated for every position. Three peaks, at positions 24-34, 50-56 and 89-97, were identified and proposed to form the complementarity determining regions (CDR) of light chains. Subsequently, antibody heavy chain amino acid sequences were also aligned using a different numbering system, since the locations of their CDRs (31-35B, 50-65 and 95-102) are different from those of the light chains. CDRL1 starts right after the first invariant Cys 23 of light chains, while CDRH1 is eight amino acid residues away from the first invariant Cys 22 of heavy chains. During the past 30 years, the Kabat database has grown to include nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules and other proteins of immunological interest. It has been used extensively by immunologists to derive useful structural and functional information from the primary sequences of these proteins.
Proper citation: Kabat Database of Sequences of Proteins of Immunological Interest (RRID:SCR_006465) Copy
http://bond.unleashedinformatics.com/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.BOND, which requires registration of a free account, is a resource used to perform cross-database searches of available sequence, interaction, complex and pathway information. BOND integrates a range of component databases including GenBank and BIND, the Biomolecular Interaction Network Database. BOND contains 70+ million biological sequences, 33,000 structures, 38,000 GO terms, and over 200,000 human curated interactions contained in BIND, and is open access. BOND serves the interests of the developing global interactome effort encompassing the genomic, proteomic and metabolomic research communities. BOND is the first open access search resource to integrate sequence and interaction information. BOND integrates BLAST functionality, and contains a well-documented API. BOND also stores annotation links for sequences, including links to Genome Ontology descriptions, MedLine abstracts, taxon identifiers, associated structures, redundant sequences, sequence neighbors, conserved domains, data base cross-references, Online Mendalian Inheritance in Man identifiers, LocusLink identifiers and complete genomes. BIND on BOND The Biomolecular Interaction Network Database (BIND), a component database of BOND, is a collection of records documenting molecular interactions. The contents of BIND include high-throughput data submissions and hand-curated information gathered from the scientific literature. BIND is an interaction database with three classifications for molecular associations: molecules that associate with each other to form interactions, molecular complexes that are formed from one or more interaction(s) and pathways that are defined by a specific sequence of two or more interactions.Interactions A BIND record represents an interaction between two or more objects that is believed to occur in a living organism. A biological object can be a protein, DNA, RNA, ligand, molecular complex, gene, photon or an unclassified biological entity. BIND records are created for interactions which have been shown experimentally and published in at least one peer-reviewed journal. A record also references any papers with experimental evidence that support or dispute the associated interaction. Interactions are the basic units of BIND and can be linked together to form molecular complexes or pathways. The BIND interaction viewer is a tool to visualize and analyze molecular interactions, complexes and pathways. The BIND interaction viewer uses Ontoglyphs to display information about a protein via attributes such as molecular function, biological process and sub-cellular localization. Ontoglyphs allow to graphically and interactively explore interaction networks, by visualizing interactions in the context of 34 functional, 25 binding specificity and 24 sub-cellular localization Ontoglyphs categories. We will continue to provide an open access version of BOND, providing its subscribers with free, unlimited access to a core content set. But we are confident you will soon want to upgrade to BONDplus.
Proper citation: Biomolecular Object Network Databank (RRID:SCR_007433) Copy
https://brads.nichd.nih.gov/Home/
Access to data from the Division of Intramural Population Health Research (DIPHR) of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) from completed studies, including biospecimens and ancillary data.
Proper citation: Biospecimen Repository Access and Data Sharing (RRID:SCR_017383) Copy
Collection of reference datasets for human immunology, derived from control subjects in the NIAID ImmPort database . Available data include flow cytometry, CyTOF, multiplex ELISA, gene expression, HAI titers, clinical lab tests, HLA type, and others.
Proper citation: The 10000 Immunomes (RRID:SCR_016624) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.