Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 76 results
Snippet view Table view Download 76 Result(s)
Click the to add this resource to a Collection

http://sourceforge.net/p/fbbtdv/wiki/Home/

A structured controlled vocabulary of the anatomy of Drosophila melanogaster. These ontologies are query-able reference sources for information on Drosophila anatomy and developmental stages. They also provide controlled vocabularies for use in annotation and classification of data related to Drosophila anatomy, such as gene expression, phenotype and images. They were originally developed by FlyBase, who continue to maintain them and have used them for over 200,000 annotations of phenotypes and expression. Extensive use of synonyms means that, given a suitably sophisticated autocomplete, users can find relevant content by searching with almost any anatomical term they find in the literature. These ontologies are developed in the web ontology language OWL2. Their extensive formalization in OWL can be used to drive sophisticated query systems.

Proper citation: Drosophila anatomy and development ontologies (RRID:SCR_001607) Copy   


  • RRID:SCR_001630

    This resource has 1+ mentions.

http://uswest.ensembl.org/info/docs/variation/index.html

Public database that stores areas of genome that differ between individual genomes (variants) and, where available, associated disease and phenotype information. Different types of variants for several species: single nucleotide polymorphisms (SNPs), short nucleotide insertions and/or deletions, and longer variants classified as structural variants (including CNVs). Effects of variants on the Ensembl transcripts and regulatory features for each species are predicted. You can run same analysis on your own data using Variant Effect Predictor. These data are integrated with other data sources in Ensembl, and can be accessed using the API or website. For several different species in Ensembl, they import variation data (SNPs, CNVs, allele frequencies, genotypes, etc) from a variety of sources (e.g. dbSNP). Imported variants and alleles are subjected to quality control process to flag suspect data. In human, they calculate linkage disequilibrium for each variant, by population.

Proper citation: Ensembl Variation (RRID:SCR_001630) Copy   


  • RRID:SCR_001623

    This resource has 10+ mentions.

http://ancora.genereg.net/

Web resource that provides data and tools for exploring genomic organization of highly conserved noncoding elements (HCNEs) for multiple genomes. It includes a genome browser that shows HCNE locations and features novel HCNE density plots as a powerful tool to discover developmental regulatory genes and distinguish their regulatory elements and domains. They identify HCNEs as non-exonic regions of high similarity between genome sequences from distantly related organisms, such as human and fish, and provide tools for studying the distribution of HCNEs along chromosomes. Major peaks of HCNE density along chromosomes most often coincide with developmental regulatory genes. Their aim with this site is to aid discovery of developmental regulatory genes, their regulatory domains and their fundamental regulatory elements.

Proper citation: Ancora (RRID:SCR_001623) Copy   


  • RRID:SCR_001421

https://scicrunch.org/scicrunch/data/source/nlx_154697-1/search?q=*&l=

Integrated Animals is a virtual database currently indexing available animal strains and mutants from: AGSC (Ambystoma), BCBC (mice), BDSC (flies), CWRU Cystic Fibrosis Mouse Models (mice), DGGR (flies), FlyBase (flies), IMSR (mice), MGI (mice), MMRRC (mice), NSRRC (pig), NXR (Xenopus), RGD (rats), Sperm Stem Cell Libraries for Biological Research (rats), Tetrahymena Stock Center (Tetrahymena), WormBase (worms), XGSC (Xiphophorus), ZFIN (zebrafish), and ZIRC (zebrafish).

Proper citation: Integrated Animals (RRID:SCR_001421) Copy   


  • RRID:SCR_006819

    This resource has 1+ mentions.

http://owlsim.org

Software package that provides the ability to do a number of standard semantic similarity methods and includes novel methods for combining these with dynamic selection of anonymous grouping classes. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: OwlSim (RRID:SCR_006819) Copy   


http://purl.bioontology.org/ontology/FB-DV

A structured controlled vocabulary of the development of Drosophila melanogaster.

Proper citation: Drosophila Development Ontology (RRID:SCR_010310) Copy   


http://purl.bioontology.org/ontology/FB-BT

A structured controlled vocabulary of the anatomy of Drosophila melanogaster.

Proper citation: Drosophila Gross Anatomy Ontology (RRID:SCR_010311) Copy   


  • RRID:SCR_004123

    This resource has 10+ mentions.

http://www.flytf.org/

A database of genomic and protein data for Drosophila site-specific transcription factors.

Proper citation: FlyTF.org (RRID:SCR_004123) Copy   


http://lifespandb.sageweb.org/

Database that collects published lifespan data across multiple species. The entire database is available for download in various formats including XML, YAML and CSV.

Proper citation: Lifespan Observations Database (RRID:SCR_001609) Copy   


https://www.bgee.org/

Database to retrieve and compare gene expression patterns between animal species. Bgee first maps heterogeneous expression data (currently bulk RNA-Seq, scRNA-Seq, Affymetrix, in situ hybridization, and EST data) to anatomy and development of different species. Bgee is based exclusively on curated healthy wild-type expression data (e.g., no gene knock-out, no treatment, no disease), to provide a comparable reference of gene expression.

Proper citation: Bgee: dataBase for Gene Expression Evolution (RRID:SCR_002028) Copy   


  • RRID:SCR_001523

    This resource has 1000+ mentions.

http://mint.bio.uniroma2.it/

A database that focuses on experimentally verified protein-protein interactions mined from the scientific literature by expert curators. The curated data can be analyzed in the context of the high throughput data and viewed graphically with the MINT Viewer. This collection of molecular interaction databases can be used to search for, analyze and graphically display molecular interaction networks and pathways from a wide variety of species. MINT is comprised of separate database components. HomoMINT, is an inferred human protein interatction database. Domino, is database of domain peptide interactions. VirusMINT explores the interactions of viral proteins with human proteins. The MINT connect viewer allows you to enter a list of proteins (e.g. proteins in a pathway) to retrieve, display and download a network with all the interactions connecting them.

Proper citation: MINT (RRID:SCR_001523) Copy   


http://cbl-gorilla.cs.technion.ac.il/

A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.

Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy   


  • RRID:SCR_006250

    This resource has 100+ mentions.

http://genetrail.bioinf.uni-sb.de/

A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes.

Proper citation: GeneTrail (RRID:SCR_006250) Copy   


  • RRID:SCR_006829

    This resource has 10+ mentions.

http://gbrowse.org/

A database and interactive web site for manipulating and displaying annotations on genomes. Features include: detailed views of the genome; use of a variety of premade or personally made glyphs ; customizable order and appearance of tracks by administrators and end-users; search by annotation ID, name, or comment; support of third party annotation using GFF formats; DNA and GFF dumps; connectivity to different databases, including BioSQL and Chado; and a customizable plug-in architecture (e.g. run BLAST, find oligonucleotides, design primers, etc.). GBrowse is distributed as source code for Macintosh OS X, UNIX and Linux platforms, and as pre-packaged binaries for Windows machines. It can be installed using the standard Perl module build procedure, or automated using a network-based install script. In order to use the net installer, you will need to have Perl 5.8.6 or higher and the Apache web server installed. The wiki portion accepts data submissions.

Proper citation: GBrowse (RRID:SCR_006829) Copy   


  • RRID:SCR_007045

    This resource has 10+ mentions.

http://bioinformatics.biol.uoa.gr/cuticleDB

A relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the five sequenced genomes where manual annotation has been applied to cuticular proteins: Anopheles gambiae, Apis mellifera, Bombyx mori, Drosophila melanogaster, and Nasonia vitripennis. Some sequences were confirmed as authentic cuticular proteins because protein sequencing revealed that they were present in cuticle; others were identified by sequence homology and other criteria. Entries provides information about whether sequences are putative or authentic cuticular proteins. CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.

Proper citation: CuticleDB (RRID:SCR_007045) Copy   


  • RRID:SCR_008886

http://dnatraffic.ibb.waw.pl/

DNAtraffic database is dedicated to be an unique comprehensive and richly annotated database of genome dynamics during the cell life. DNAtraffic contains extensive data on the nomenclature, ontology, structure and function of proteins related to control of the DNA integrity mechanisms such as chromatin remodeling, DNA repair and damage response pathways from eight model organisms commonly used in the DNA-related study: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on diseases related to the assembled human proteins. Database is richly annotated in the systemic information on the nomenclature, chemistry and structure of the DNA damage and drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA metabolism pathway analysis. Database includes illustrations of pathway, damage, protein and drug. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines it has to be extensively linked to numerous external data sources. Database represents the result of the manual annotation work aimed at making the DNAtraffic database much more useful for a wide range of systems biology applications. DNAtraffic database is freely available and can be queried by the name of DNA network process, DNA damage, protein, disease, and drug.

Proper citation: DNAtraffic (RRID:SCR_008886) Copy   


  • RRID:SCR_013023

    This resource has 10+ mentions.

http://www.benoslab.pitt.edu/comir/

Data analysis service that predicts whether a given mRNA is targeted by a set of miRNAs. ComiR uses miRNA expression to improve and combine multiple miRNA targets for each of the four prediction algorithms: miRanda, PITA, TargetScan and mirSVR. The composite scores of the four algorithms are then combined using a support vector machine trained on Drosophila Ago1 IP data.

Proper citation: ComiR (RRID:SCR_013023) Copy   


  • RRID:SCR_013222

    This resource has 10+ mentions.

http://dorina.mdc-berlin.de/rbp_browser/dorina.html

In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We provide a database that supports the quest for deciphering this regulatory code. Within doRiNA, we are systematically curating, storing and integrating binding site data for RBPs and miRNAs. Users are free to take a target (mRNA) or regulator (RBP and/or miRNA) centric view on the data. We have implemented a database framework with short query response times for complex searches (e.g. asking for all targets of a particular combination of regulators). All search results can be browsed, inspected and analyzed in conjunction with a huge selection of other genome-wide data, because our database is directly linked to a local copy of the UCSC genome browser. At the time of writing, doRiNA encompasses RBP data for the human, mouse and worm genomes. For computational miRNA target site predictions, we provide an update of PicTar predictions.

Proper citation: doRiNA (RRID:SCR_013222) Copy   


http://proline.bic.nus.edu.sg/dedb/

Database on Drosophila melanogaster exons presented in a splicing graph form. Data is based on release 3.2 of the Drosophila melanogaster genome annotations available at FlyBase. The gene structure information extracted from the annotations were checked, clustered and transformed into splicing graph. The splicing graph form of the gene constructs were then used for classification of the various types of alternative splicing events. In addition, Pfam domains were mapped onto the gene structure. Users can query the database using the query page using BLAST, FlyBase Gene Name, FlyBase Gene Symbol, Pfam Accession Number and Pfam Identifier. This allows users to determine the Drosophila melanogaster homology of their gene using a BLAST search and to visualize the alternative splicing variants if any. Users can also determine genes containing a particular domain using the Pfam Accession Numbers and Identifiers.

Proper citation: Drosophila melanogaster Exon Database (RRID:SCR_013441) Copy   


  • RRID:SCR_002469

    This resource has 10+ mentions.

http://bpg.utoledo.edu/~afedorov/lab/eid.html

Data sets of protein-coding intron-containing genes that contain gene information from humans, mice, rats, and other eukaryotes, as well as genes from species whose genomes have not been completely sequenced. This is a comprehensive and convenient dataset of sequences for computational biologists who study exon-intron gene structures and pre-mRNA splicing. The database is derived from GenBank release 112, and it contains protein-coding genes that harbor introns, along with extensive descriptions of each gene and its DNA and protein sequences, as well as splice motif information. They have created subdatabases of genes whose intron positions have been experimentally determined. The collection also contains data on untranslated regions of gene sequences and intron-less genes. For species with entirely sequenced genomes, species-specific databases have been generated. A novel Mammalian Orthologous Intron Database (MOID) has been introduced which includes the full set of introns that come from orthologous genes that have the same positions relative to the reading frames.

Proper citation: EID: Exon-Intron Database (RRID:SCR_002469) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X