Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://med.stanford.edu/sfgf.html
Stanford Genomics formerly Stanford Functional Genomics Facility provides services for high throughput sequencing, single cell assays, gene expression and genotyping studies utilizing microarray and real time PCR, and related services. High throughput sequencing (Illumina HiSeq 4000, NextSeq 500, MiSeq and MiniSeq), microarray gene expression and genotyping services (Affymetrix, Agilent and Illumina). Provides 24/7 access to instruments, equipment and software utilized within genomics field.
Proper citation: Stanford Genomics Service Center Core Facility (RRID:SCR_002050) Copy
Network of clinical centers and a data coordinating center established to conduct studies of islet transplantation in patients with type 1 diabetes.
Proper citation: Clinical Islet Transplantation Consortium (CITC) (RRID:SCR_014385) Copy
https://sourceforge.net/projects/timezone1/
Software package to detect footprints of positive selection for functionally adaptive point mutations in microbial genomes.
Proper citation: TimeZone (RRID:SCR_018564) Copy
https://github.com/dpeerlab/phenograph
Software tool as clustering method designed for high dimensional single cell data. Algorithmically defines phenotypes in high dimensional single cell data. Used for large scale analysis of single cell heterogeneity.
Proper citation: Phenograph (RRID:SCR_016919) Copy
https://www.urmc.rochester.edu/microbiology-immunology/xenopus-laevis.aspx
A comprehensive resource specializing in the use of the amphibian Xenopus laevis (the African clawed frog) for biomedical and immunological research. Several genetically-defined inbred strains and clones are available for study. The facility also maintains and develops research tools such as transgenic animals, monoclonal antibodies, cell lines, DNA libraries, and molecular probes. XLRR includes a satellite facility devoted to study infectious diseases caused by iridovirus. Technical assistance, education, and training are also provided.
Proper citation: Xenopus laevis Research Resource for Immunobiology (XLRR) (RRID:SCR_014354) Copy
Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.
Proper citation: VectorBase (RRID:SCR_005917) Copy
The Hepatitis C Virus Database (HCVdb) is a cooperative project of several groups with the mission of providing to the scientific community studying the hepatitis C virus a comprehensive battery of informational and analytical tools. The Viral Bioinformatics Resource Center (VBRC), the Immune Epitope Database and Analysis Resource (IEDB), the Broad Institute Microbial Sequencing Center (MSC), and the Los Alamos HCV Sequence Database (HCV-LANL) are combining forces to acquire and annotate data on Hepatitis C virus, and to develop and utilize new tools to facilitate the study of this group of organisms.
Proper citation: Hepatitis C Virus Database (HCVdb) (RRID:SCR_005718) Copy
One of eight Bioinformatics Resource Centers nationwide providing comprehensive web-based genomics resources including a relational database and web application supporting data storage, annotation, analysis, and information exchange to support scientific research directed at viruses belonging to the Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, Paramyxoviridae, Poxviridae, and Togaviridae families. These centers serve the scientific community and conduct basic and applied research on microorganisms selected from the NIH/NIAID Category A, B, and C priority pathogens that are regarded as possible bioterrorist threats or as emerging or re-emerging infectious diseases. The VBRC provides a variety of analytical and visualization tools to aid in the understanding of the available data, including tools for genome annotation, comparative analysis, whole genome alignments, and phylogenetic analysis. Each data release contains the complete genomic sequences for all viral pathogens and related strains that are available for species in the above-named families. In addition to sequence data, the VBRC provides a curation for each virus species, resulting in a searchable, comprehensive mini-review of gene function relating genotype to biological phenotype, with special emphasis on pathogenesis.
Proper citation: VBRC (RRID:SCR_005971) Copy
http://hcv.lanl.gov/content/immuno/immuno-main.html
The HCV Immunology Database contains a curated inventory of immunological epitopes in HCV and their interaction with the immune system, with associated retrieval and analysis tools. The funding for the HCV database project has stopped, and this website and the HCV immunology database are no longer maintained. The site will stay up, but problems will not be fixed. The database was last updated in September 2007. The HIV immunology website contains the same tools, and may be usable for non-HCV-specific analyses. For new epitope information, users of this database can try the Immuno Epitope Database (http://www.immuneepitope.org).
Proper citation: HCV Immunology Database (RRID:SCR_007086) Copy
http://patricbrc.vbi.vt.edu/portal/portal/patric/IncumbentBRCs?page=eric
ERIC is a resource of annotated enterobacterial genomes. Information is available and accessed through a open web portal uniting biological data and analysis tools. ERIC contains information on Escherichia, Shigella, Salmonella, Yersinia, and other microorgansims. ERIC has recently been moved over to PATRIC: The PATRIC BRC is now responsible for all bacterial species in the NIAID Category A-C Priority Pathogen lists for biodefense research, and pathogens causing emerging/reemerging infectious diseases. For ERIC users, we understand that the resource was valuable to your work. As such, we will be doing our very best to create a useful PATRIC resource to continue supporting your work. We realize that the transition will cause disruptions. However, it is a priority for us to work with established BRC users and communities to identify and prioritize our transition efforts. We have concentrated on the transfer of genomic data for this initial release. We anticipate adding new data, tools, and website features over the next several months. We look forward to working with you during the next 5 years.
Proper citation: ERIC (RRID:SCR_007644) Copy
http://www.nmpdr.org/FIG/wiki/view.cgi
The National Microbial Pathogen Data Resource provides curated annotations in an environment for comparative analysis of genomes and biological subsystems, with an emphasis on the food-borne pathogens Campylobacter, Listeria, Staphylococcus, Streptococcus, and Vibrio; as well as the STD pathogens Chlamydiaceae, Haemophilus, Mycoplasma, Neisseria, Treponema, and Ureaplasma. This edition of the NMPDR includes 47 archaeal, 725 bacterial, and 29 eukaryal genomes with 3,257,100 genetic features, of which 1,338,895 are in FIGfams curated using 616 active subsystems. ''''''Notice to NMPDR Users'''''' - The NMPDR BRC contract ended in December 2009. At that time we ceased maintenance of the NMPDR web resource and data. Bacterial data from NMPDR has been transferred to PATRIC (http://www.patricbrc.org), a new consolidated BRC for all NIAID category A-C priority pathogenic bacteria. NMPDR was a collaboration among researchers from the Computation Institute of the University of Chicago, the Fellowship for Interpretation of Genomes (FIG), Argonne National Laboratory, and the National Center for Supercomputing Applications (NCSA) at the University of Illinois.
Proper citation: NMPDR (RRID:SCR_007821) Copy
http://www.jax.org/imr/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 08, 2012. The function of the IMR is to select, import, cryopreserve, maintain, and distribute these important strains of mice to the research community. To improve their value for research, the IMR also undertakes genetic development of stocks, such as transferring mutant genes or transgenes to defined genetic backgrounds and combining transgenes and/or targeted mutations to create new mouse models for research. The function of the IMR is to: * select biomedically important stocks of transgenic, chemically induced, and targeted mutant mice * import these stocks into the Jackson Laboratory by rederivation procedures that rid them of any pathogens they might carry * cryopreserve embryos from these stocks to protect them against accidental loss and genetic contamination * backcross the mutation onto an inbred strain, if necessary * distribute them to the scientific community More than 1000 mutant stocks have been accepted by the IMR from 1992 through December 2006. Current holdings include models for research on cancer; breast cancer; immunological and inflammatory diseases; neurological diseases; behavioral, cardiovascular and heart diseases; developmental, metabolic and other diseases; reporter (e.g., GFP) and recombinase (e.g., cre/loxP) strains. About eight strains a month are being added to the IMR holdings. Research is being conducted on improved methods for assisted reproduction and speed congenic production. Most of the targeted mutants arrive on a mixed 129xC57BL/6 genetic background, and as many of these as possible are backcrossed onto an inbred strain (usually C57BL/6J). In addition, new mouse models are being created by intercrossing carriers of specific transgenes and/or targeted mutations. Simple sequence length polymorphism DNA markers are being used to characterize and evaluate differences between inbred strains, substrains, and embryonic stem cell lines.
Proper citation: Induced Mutant Resource (RRID:SCR_008366) Copy
http://pathema.jcvi.org/Pathema/index.html
Pathema is one of the eight Bioinformatics Resource Centers designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms. The Pathema BRC contract ends in December 2009. At that time JCVI will cease maintenance of the Pathema web resource and data. The PATRIC team, located at the Virginia Bioinformatics Institute, created and maintains a consolidated BRC for all of the NIAID category A-C priority pathogenic bacteria. The EuPathDB team at the University of Pennsylvania will support all eukaryotic pathogens. Pathema transferred all data and software to PATRIC and EuPathDB for incorporation into their new Web-based bioinformatics resource.
Proper citation: Pathema (RRID:SCR_010585) Copy
http://www.viprbrc.org/brc/home.do?decorator=vipr
Provides searchable public repository of genomic, proteomic and other research data for different strains of pathogenic viruses along with suite of tools for analyzing data. Data can be shared, aggregated, analyzed using ViPR tools, and downloaded for local analysis. ViPR is an NIAID-funded resource that support the research of viral pathogens in the NIAID Category A-C Priority Pathogen lists and those causing (re)emerging infectious diseases. It provides a dedicated gateway to SARS-CoV-2 data that integrates data from external sources (GenBank, UniProt, Immune Epitope Database, Protein Data Bank), direct submissions, analysis pipelines and expert curation, and provides a suite of bioinformatics analysis and visualization tools for virology research.
Proper citation: Virus Pathogen Resource (ViPR) (RRID:SCR_012983) Copy
http://www-sequence.stanford.edu/group/candida/
The Stanford Genome Technology Center began a whole genome shotgun sequencing of strain SC5314 of Candida albicans. After reaching its original goal of 1.5X mean coverage of the haploid genome (16Mb) in summer, 1998, Stanford was awarded a supplemental grant to continue sequencing up to a coverage of 10X, performing as much assembly of the sequence as possible, using recognizable genes as nucleation points. Candida albicans is one of the most commonly encountered human pathogens, causing a wide variety of infections ranging from mucosal infections in generally healthy persons to life-threatening systemic infections in individuals with impaired immunity. Oral and esophogeal Candida infections are frequently seen in AIDS patients. Few classes of drugs are effective against these fungal infections, and all of them have limitations with regard to efficacy and side-effects.
Proper citation: Sequencing of Candida Albicans (RRID:SCR_013437) Copy
Functional genomic database for malaria parasites. Database for Plasmodium spp. Provides resource for data analysis and visualization in gene-by-gene or genome-wide scale. PlasmoDB 5.5 contains annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution data. Data can be queried by selecting from query grid or drop down menus. Results can be combined with each other on query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.Key community database for malaria researchers, intersecting many types of laboratory and computational data, aggregated by gene.
Proper citation: PlasmoDB (RRID:SCR_013331) Copy
http://www.niaid.nih.gov/topics/alps/Pages/default.aspx
A disease-related portal about Autoimmune Lymphoproliferative Syndrome (ALPS) including research in the following categories: Medical and Genetic Description, Database of Mutations, Database of ALPS-FAS Mutations, and Molecular Pathways. Autoimmune Lymphoproliferative Syndrome (ALPS) is a recently recognized disease in which a genetic defect in programmed cell death, or apoptosis, leads to breakdown of lymphocyte homeostasis and normal immunologic tolerance. It is an inherited disorder of the immune system that affects both children and adults. In ALPS, unusually high numbers of white blood cells called lymphocytes accumulate in the lymph nodes, liver, and spleen, which can lead to enlargement of these organs. Database of Mutations * All existing ALPS-FAS mutations (NIH Web site) * ALPS-FAS * ALPS Type Ia (most common type) ** Reported FAS (TNFRSF6) mutations causing ALPS ** Distribution of FAS (TNFRSF6) mutations ** FAS (TNFRSF6) polymorphisms * ALPS Type II
Proper citation: Autoimmune Lymphoproliferative Syndrome Information (RRID:SCR_006451) Copy
https://www.fludb.org/brc/home.spg?decorator=influenza
The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.
Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy
http://www.autoimmunitycenters.org/
Nine centers that conduct clinical trials and basic research on new immune-based therapies for autoimmune diseases. This program enhances interactions between scientists and clinicians in order to accelerate the translation of research findings into medical applications. By promoting better coordination and communication, and enabling limited resources to be pooled, ACEs is one of NIAID''''s primary vehicles for both expanding our knowledge and improving our ability to effectively prevent and treat autoimmune diseases. This coordinated approach incorporates key recommendations of the NIH Autoimmune Diseases Research Plan and will ensure progress in identifying new and highly effective therapies for autoimmune diseases. ACEs is advancing the search for effective treatments through: * Diverse Autoimmunity Expertise Medical researchers at ACEs include rheumatologists, neurologists, gastroenterologists, and endocrinologists who are among the elite in their respective fields. * Strong Mechanistic Foundation ACEs augment each clinical trial with extensive basic studies designed to enhance understanding of the mechanisms responsible for tolerance initiation, maintenance, or loss, including the role of cytokines, regulatory T cells, and accessory cells, to name a few. * Streamlined Patient Recruitment The cooperative nature of ACEs helps scientists recruit patients from distinct geographical areas. The rigorous clinical and basic science approach of ACEs helps maintain a high level of treatment and analysis, enabling informative comparisons between patient groups.
Proper citation: Autoimmunity Centers of Excellence (RRID:SCR_006510) Copy
http://www.niaid.nih.gov/topics/transplant/research/Pages/fundedBasics.aspx#NHPTCSP
Cooperative program for research on nonhuman primate models of kidney, islet, heart, and lung transplantation evaluating the safety and efficacy of existing and new treatment regimens that promote the immune system''''s acceptance of a transplant and to understand why the immune system either rejects or does not reject a transplant. This program bridges the critical gap between small-animal research and human clinical trials. The program supports research into the immunological mechanisms of tolerance induction and development of surrogate markers for the induction, maintenance, and loss of tolerance.
Proper citation: Nonhuman Primate Transplantation Tolerance Cooperative Study Group (RRID:SCR_006847) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.