Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Common data management resource and web portal to promote discovery of Parkinson's Disease diagnostic and progression biomarker candidates for early detection and measurement of disease progression. PDBP will serve as multi-faceted platform for integrating existing biomarker efforts, standardizing data collection and management across these efforts, accelerating discovery of new biomarkers, and fostering and expanding collaborative opportunities for all stakeholders.
Proper citation: Parkinson’s Disease Biomarkers Program Data Management Resource (PDBP DMR) (RRID:SCR_002517) Copy
http://www.lajollaneuroscience.org/
Our NINDS Center Core Grant supports centralized resources and facilities shared by investigators with existing NINDS-funded research projects. Our Center is composed of three research cores, each of which will enrich the effectiveness of ongoing research, and promote new research directions. The three Core facilities support Electrophysiology, Neuropathology / Histology, and High-Throughput/High-Content Chemical and Genomic Library screening. By making these important Core Services available to the local Neuroscience community, the La Jolla Neurosciences Program hopes to promote the study of how the nervous system works and develop treatments for nervous system diseases. The cores and their services are available to La Jolla neuroscientists. Core services are available to NINDS-supported neuroscience projects from local investigators as well as young neuroscientists prior to obtaining their first NIH-funded grant. * Electrophysiology: SBMRI Electrophysiology ** The Electrophysiology Core consists of the Sanford-Burnham Electrophysiology Facility. This facility can perform patch-clamp intracellular and extracellular field recordings on a range of material including cultured cells and brain slices. The Sanford-Burnham facility emphasizes electrophysiological analysis of cultured cells and the detailed electrical properties of channels, receptors and recombinant proteins expressed in Xenopus oocytes or mammalian cells. * Neuropathology: UCSD Neuropathology ** The Neuropathology laboratory applies immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy to analysis of neurological disease in animal models. * Chemical Library Screening: SBIMR Assay Development, SBIMR Chemical Library Screening, SBIMR Cheminformatics, SBIMR High-content Screening ** The Chemical Library Screening core offers high-throughput screening (HTS) of biochemical and cell-based array using traditional HTS readouts and automated microscopy for high-content screening (HCS)> These facilities also offer array development and screening, as well as cheminformatics and medicinal chemistry.
Proper citation: La Jolla Interdisciplinary Neurosciences Center (RRID:SCR_002772) Copy
Digital atlas of gene expression patterns in developing and adult mouse. Several reference atlases are also available through this site. Expression patterns are determined by non-radioactive in situ hybridization on serial tissue sections. Sections are available from several developmental ages: E10.5, E14.5 (whole embryos), E15.5, P7 and P56 (brains only). To retrieve expression patterns, search by gene name, site of expression, GenBank accession number or sequence homology. For viewing expression patterns, GenePaint.org features virtual microscope tool that enables zooming into images down to cellular resolution.
Proper citation: GenePaint (RRID:SCR_003015) Copy
http://www.stjudebgem.org/web/mainPage/mainPage.php
This database contains gene expression patterns assembled from mouse nervous tissues at 4 time points throughout brain development including embryonic (e) day 11.5, e15.5, postnatal (p) day 7 and adult p42. Using a high throughput in situ hybridization approach we are assembling expression patterns from selected genes and presenting them in a searchable database. The database includes darkfield images obtained using radioactive probes, reference cresyl violet stained sections, the complete nucleotide sequence of the probes used to generate the data and all the information required to allow users to repeat and extend the analyses. The database is directly linked to Pubmed, LocusLink, Unigene and Gene Ontology Consortium housed at the National Center for Biotechnology Information (NCBI) in the National Library of Medicine. These data are provided freely to promote communication and cooperation among research groups throughout the world.
Proper citation: Brain Gene Expression Map (RRID:SCR_001517) Copy
http://surfer.nmr.mgh.harvard.edu/
Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.
Proper citation: FreeSurfer (RRID:SCR_001847) Copy
A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.
Proper citation: L-Measure (RRID:SCR_003487) Copy
http://national_databank.mclean.org
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.
Proper citation: National Brain Databank (RRID:SCR_003606) Copy
https://endomap.hms.harvard.edu/
Structural interactome viewer. Interactive database of endosomal protein-protein interactions identified by cross-linking mass spectrometry and modeled by AlphaFold multimer. Structural protein interactome of human early endosomes.
Proper citation: EndoMap (RRID:SCR_026690) Copy
http://jaxmice.jax.org/list/ra1642.html
Produce new neurological mouse models that could serve as experimental models for the exploration of basic neurobiological mechanisms and diseases. The impetus for the program resulted from the recognition that: * The value of genomic data would remain limited unless more information about the functionality of its individual components became available. * The task of linking genes to specific behavior would best be accomplished by employing a combination of different approaches. In an effort to complement already existing programs, the Neuroscience Mutagenesis Facility decided to use: a random, genome-wide approach to mutagenesis, i.e.N-ethyl-N-nitrosourea (ENU) as the mutagen; a three-generation back-cross breeding scheme to focus on the detection of recessive mutations; behavioral screens selective for the detection of phenotypes deemed useful for the program goals. The resulting mutant mouse lines have been available to the scientific community for the last five years and over 700 NMF mice have been sent to interested investigators for research; these mutant mouse lines will remain available as frozen embryos (which can be re-derived on request) and can be ordered through the JAX customer service at 1-800-422-6423 (or 207-288-5845). The results of the work of the Neuroscience Mutagenesis Facility and that of two other neurogenesis centers, i.e. The Neurogenomics Project at Northwestern University, and the Neuromutagenesis Project of the Tennessee Mouse Genome Consortium, can also be seen at Neuromice.org, a common web site of these three research centers; in addition, information about all mutants produced by these groups has been recorded in MGI.
Proper citation: JAX Neuroscience Mutagenesis Facility (RRID:SCR_007437) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
http://www.ninds.nih.gov/research/parkinsonsweb/amr/amr_mice_ucla_repository.htm
THIS RESOURCE IS NO LONGER IN SERVICE, documented on April 26, 2011. Information for depositors Investigators who are willing to share mice with the PD research community through this resource should send an email to PDMice_at_ninds.nih.gov describing the mouse. The submission will be reviewed by the PD Models Repository Oversight Committee and, if accepted, a copy of the MTA will be sent by return email. NINDS is most interested in distributing mice that have been characterized in a peer-reviewed publication, but other models will certainly be considered. The email should describe the following: The protocol for identification from tail DNA. The health report of the mice to be shipped (the report has to be less than 2 months old). Information about the strain and any special needs for care and breeding. Information about any publications involving the mice Certification that mice are not encumbered by continuing intellectual property or other rights to any research, data or discovery utilizing the animals. Information for consumers Investigators desiring to study the mice available through the repository should send a request via email to PDMice_at_ninds.nih.gov. Requests will be reviewed by the PD Models Repository Oversight Committee and priority will be determined on a first come, first served basis; two breeding pairs will typically be shipped to any single requester. As detailed in the MTA, mice are not available for commercial research, including but not limited to drug screening. Neither the creator nor UCLA have a role in the governance of the Repository, and specifically, cannot impose conditions upon availability or distribution. It is anticipated that until the Repository is in a mode of steady state production, requests will be collected and mice distributed as supply allows. The email requesting mice should include: A brief description of the protocol Either a copy of the IACUC approval letter or numberNINDS/UCLA Repository for Parkinson's Disease Mouse Models: One of the most immediate and important benefits of discoveries regarding the genetic or environmental causes of Parkinson's disease (PD) is the subsequent development of animal models wherein therapeutic and/or preventative interventions may be studied. The widespread availability of such models is critically important to making progress against a disorder that affects more than 500,000 Americans at any given time. The National Institute of Neurological Disorders and Stroke (NINDS) fully recognizes the burden placed on investigators by the financial and logistical realities of distributing high demand research resources. Some investigators have deposited their mice with national distribution facilities but many mouse models are not available through such resources. Developing means to facilitate greater sharing of mouse models of PD is one of the goals developed by the PD research community at the July 2002 summit meeting convened by the NIH Director. Accordingly, as part of the effort to accelerate PD research, NINDS and the University of California at Los Angeles (UCLA) created a resource that will distribute transgenic mouse models of human PD that are not yet available through national commercial resources. Investigators who are willing to share mice with the PD research community can simply arrange with NINDS to have the mice deposited at UCLA and investigators desiring to study the mice may arrange with NINDS to obtain two breeding pairs. The process will use Material Transfer Agreements created specifically for this arrangement.
Proper citation: NINDS/UCLA Repository for Parkinson's Disease Mouse Models (RRID:SCR_007319) Copy
Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.
Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy
http://www.jneurosci.org/supplemental/18/12/4570/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 29, 2013. Supplemental data for the paper Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice, by Vytautas P. Bindokas, Chong C. Lee, William F. Colmers, and Richard J. Miller that appears in the Journal of Neuroscience June 15, 1998. You can view digital movies of changes in fluorescence intensity by clicking on the title of interest.
Proper citation: Hippocampal Slice Wave Animations (RRID:SCR_008372) Copy
http://ccr.coriell.org/Sections/Collections/NINDS/?SsId=10
Open resource of biological samples (DNA, cell lines, and other biospecimens) and corresponding phenotypic data to promote neurological research. Samples from more than 34,000 unique individuals with cerebrovascular disease, dystonia, epilepsy, Huntington's Disease, motor neuron disease, Parkinsonism, and Tourette Syndrome, as well as controls (population control and unaffected relatives) have been collected. The mission of the NINDS Repository is to provide 1) genetics support for scientists investigating pathogenesis in the central and peripheral nervous systems through submissions and distribution; 2) information support for patients, families, and advocates concerned with the living-side of neurological disease and stroke.
Proper citation: NINDS Repository (RRID:SCR_004520) Copy
http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases
3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.
Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy
http://www.gensat.org/retina.jsp
Collection of images from cell type-specific protein expression in retina using BAC transgenic mice. Images from cell type-specific protein expression in retina using BAC transgenic mice from GENSAT project.
Proper citation: Retina Project (RRID:SCR_002884) Copy
http://zebrafinch.brainarchitecture.org/
Atlas of high resolution Nissl stained digital images of the brain of the zebra finch, the mainstay of songbird research. The cytoarchitectural high resolution photographs and atlas presented here aim at facilitating electrode placement, connectional studies, and cytoarchitectonic analysis. This initial atlas is not in stereotaxic coordinate space. It is intended to complement the stereotaxic atlases of Akutegawa and Konishi, and that of Nixdorf and Bischof. (Akutagawa E. and Konishi M., stereotaxic atalas of the brain of zebra finch, unpublished. and Nixdorf-Bergweiler B. E. and Bischof H. J., A Stereotaxic Atlas of the Brain Of the Zebra Finch, Taeniopygia Guttata, http://www.ncbi.nlm.nih.gov.) The zebra finch has proven to be the most widely used model organism for the study of the neurological and behavioral development of birdsong. A unique strength of this research area is its integrative nature, encompassing field studies and ethologically grounded behavioral biology, as well as neurophysiological and molecular levels of analysis. The availability of dimensionally accurate and detailed atlases and photographs of the brain of male and female animals, as well as of the brain during development, can be expected to play an important role in this research program. Traditionally, atlases for the zebra finch brain have only been available in printed format, with the limitation of low image resolution of the cell stained sections. The advantages of a digital atlas over a traditional paper-based atlas are three-fold. * The digital atlas can be viewed at multiple resolutions. At low magnification, it provides an overview of brain sections and regions, while at higher magnification, it shows exquisite details of the cytoarchitectural structure. * It allows digital re-slicing of the brain. The original photographs of brain were taken in certain selected planes of section. However, the brains are seldom sliced in exactly the same plane in real experiments. Re-slicing provides a useful atlas in user-chosen planes, which are otherwise unavailable in the paper-based version. * It can be made available on the internet. High resolution histological datasets can be independently evaluated in light of new experimental anatomical, physiological and molecular studies.
Proper citation: Zebrafinch Brain Architecture Project (RRID:SCR_004277) Copy
http://www.tbi-impact.org/?p=impact%2Fcalc&btn_calc=GO+TO+CALCULATOR
A calculator that calculates the prediction models for 6 month outcome after Traumatic Brain Injury. Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients. The sequential prediction models may be used as an aid to estimate 6 month outcome in patients with severe or moderate traumatic brain injury (TBI). However, the prediction rule can only complement, never replace, clinical judgment and can therefore be used only as a decision-support system.
Proper citation: IMPACT Prognostic Calculator (RRID:SCR_004730) Copy
http://senselab.med.yale.edu/odormapdb
OdorMapDB is designed to be a database to support the experimental analysis of the molecular and functional organization of the olfactory bulb and its basis for the perception of smell. It is primarily concerned with archiving, searching and analyzing maps of the olfactory bulb generated by different methods. The first aim is to facilitate comparison of activity patterns elicited by odor stimulation in the glomerular layer obtained by different methods in different species. It is further aimed at facilitating comparison of these maps with molecular maps of the projections of olfactory receptor neuron subsets to different glomeruli, especially for gene targeted animals and for antibody staining. The main maps archived here are based on original studies using 2-deoxyglucose and on current studies using high resolution fMRI in mouse and rat. Links are also provided to sites containing maps by other laboratories. OdorMapDB thus serves as a nodal point in a multilaboratory effort to construct consensus maps integrating data from different methodological approaches. OdorMapDB is integrated with two other databases in SenseLab: ORDB, a database of olfactory receptor genes and proteins, and OdorDB, a database of odor molecules that serve as ligands for the olfactory receptor proteins. The combined use of the three integrated databases allows the user to identify odor ligands that activate olfactory receptors that project to specific glomeruli that are involved in generating the odor activity maps.
Proper citation: Olfactory Bulb Odor Map DataBase (OdorMapDB) (RRID:SCR_007287) Copy
http://kimlab.io/brain-map/atlas/
Website to visualize and share anatomical labels. Franklin and Paxinos (FP) based anatomical labels in Allen Common Coordinate Framework (CCF). Cell type specific transgenic mice and MRI atlas were used to adjust and further segment labels. New segmentations were created in dorsal striatum using cortico-striatal connectivity data. Anatomical labels were digitized based on Allen ontology, and web-interface was created for easy visualization. These labels provide resource to isolate and identify mouse brain anatomical structures. Open source data sharing will facilitate further refinement of anatomical labels and integration of data interpretation within single anatomical platform.
Proper citation: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_019267) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.