Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 105 results
Snippet view Table view Download 105 Result(s)
Click the to add this resource to a Collection

http://pdbml.pdb.org/

Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.

Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy   


http://www.ncbi.nlm.nih.gov/sra

Repository of raw sequencing data from next generation of sequencing platforms including including Roche 454 GS System, Illumina Genome Analyzer, Applied Biosystems SOLiD System, Helicos Heliscope, Complete Genomics, and Pacific Biosciences SMRT. In addition to raw sequence data, SRA now stores alignment information in form of read placements on reference sequence. Data submissions are welcome. Archive of high throughput sequencing data,part of international partnership of archives (INSDC) at NCBI, European Bioinformatics Institute and DNA Database of Japan. Data submitted to any of this three organizations are shared among them.

Proper citation: NCBI Sequence Read Archive (SRA) (RRID:SCR_004891) Copy   


http://www.ncbi.nlm.nih.gov/gap

Database developed to archive and distribute clinical data and results from studies that have investigated interaction of genotype and phenotype in humans. Database to archive and distribute results of studies including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits.

Proper citation: NCBI database of Genotypes and Phenotypes (dbGap) (RRID:SCR_002709) Copy   


  • RRID:SCR_002760

    This resource has 10000+ mentions.

http://www.ncbi.nlm.nih.gov/Genbank/

NIH genetic sequence database that provides annotated collection of all publicly available DNA sequences for almost 280 000 formally described species (Jan 2014) .These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of International Nucleotide Sequence Database Collaboration and daily data exchange with European Nucleotide Archive (ENA) and DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through NCBI Entrez retrieval system, which integrates data from major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of GenBank database are available by FTP.

Proper citation: GenBank (RRID:SCR_002760) Copy   


  • RRID:SCR_002759

    This resource has 10+ mentions.

http://sumsdb.wustl.edu/sums/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures

Proper citation: SumsDB (RRID:SCR_002759) Copy   


  • RRID:SCR_003142

    This resource has 10+ mentions.

http://braininfo.rprc.washington.edu

Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.

Proper citation: BrainInfo (RRID:SCR_003142) Copy   


  • RRID:SCR_003379

    This resource has 1+ mentions.

http://sig.biostr.washington.edu/projects/fm/

A domain ontology that represents a coherent body of explicit declarative knowledge about human anatomy. It is concerned with the representation of classes or types and relationships necessary for the symbolic representation of the phenotypic structure of the human body in a form that is understandable to humans and is also navigable, parseable and interpretable by machine-based systems. Its ontological framework can be applied and extended to all other species. The description of how the OWL version was generated is in Pushing the Envelope: Challenges in a Frame-Based Representation of Human Anatomy by N. F. Noy, J. L. Mejino, C. Rosse, M. A. Musen: http://bmir.stanford.edu/publications/view.php/pushing_the_envelope_challenges_in_a_frame_based_representation_of_human_anatomy The Foundational Model of Anatomy ontology has four interrelated components: # Anatomy taxonomy (At), # Anatomical Structural Abstraction (ASA), # Anatomical Transformation Abstraction (ATA), # Metaknowledge (Mk), The ontology contains approximately 75,000 classes and over 120,000 terms; over 2.1 million relationship instances from over 168 relationship types link the FMA's classes into a coherent symbolic model.

Proper citation: FMA (RRID:SCR_003379) Copy   


http://mimi.ncibi.org/MimiWeb/main-page.jsp

MiMi Web gives you an easy to use interface to a rich NCIBI data repository for conducting your systems biology analyses. This repository includes the MiMI database, PubMed resources updated nightly, and text mined from biomedical research literature. The MiMI database comprehensively includes protein interaction information that has been integrated and merged from diverse protein interaction databases and other biological sources. With MiMI, you get one point of entry for querying, exploring, and analyzing all these data. MiMI provides access to the knowledge and data merged and integrated from numerous protein interactions databases and augments this information from many other biological sources. MiMI merges data from these sources with deep integration into its single database with one point of entry for querying, exploring, and analyzing all these data. MiMI allows you to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI displays results of your queries in easy-to-browse interfaces and provides you with workspaces to explore and analyze the results. Among these workspaces is an interactive network of protein-protein interactions displayed in Cytoscape and accessed through MiMI via a MiMI Cytoscape plug-in. MiMI gives you access to more information than you can get from any one protein interaction source such as: * Vetted data on genes, attributes, interactions, literature citations, compounds, and annotated text extracts through natural language processing (NLP) * Linkouts to integrated NCIBI tools to: analyze overrepresented MeSH terms for genes of interest, read additional NLP-mined text passages, and explore interactive graphics of networks of interactions * Linkouts to PubMed and NCIBI's MiSearch interface to PubMed for better relevance rankings * Querying by keywords, genes, lists or interactions * Provenance tracking * Quick views of missing information across databases. Data Sources include: BIND, BioGRID, CCSB at Harvard, cPath, DIP, GO (Gene Ontology), HPRD, IntAct, InterPro, IPI, KEGG, Max Delbreuck Center, MiBLAST, NCBI Gene, Organelle DB, OrthoMCL DB, PFam, ProtoNet, PubMed, PubMed NLP Mining, Reactome, MINT, and Finley Lab. The data integration service is supplied under the conditions of the original data sources and the specific terms of use for MiMI. Access to this website is provided free of charge. The MiMI data is queryable through a web services api. The MiMI data is available in PSI-MITAB Format. These files represent a subset of the data available in MiMI. Only UniProt and RefSeq identifiers are included for each interactor, pathways and metabolomics data is not included, and provenance is not included for each interaction. If you need access to the full MiMI dataset please send an email to mimi-help (at) umich.edu.

Proper citation: Michigan Molecular Interactions (RRID:SCR_003521) Copy   


  • RRID:SCR_003424

    This resource has 1+ mentions.

http://portal.ncibi.org/gateway/mimiplugin.html

The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.

Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy   


  • RRID:SCR_009626

    This resource has 10+ mentions.

http://itools.loni.usc.edu/

An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).

Proper citation: iTools (RRID:SCR_009626) Copy   


  • RRID:SCR_006110

https://compbio.dfci.harvard.edu/predictivenetworks//

A flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these ''known'' interactions together with gene expression data to infer robust gene networks. The regression-based network inference algorithm creates a graph of gene interactions in which cycles may be present (but no self-loops). Based on information-theoretic techniques, a causal gene interaction network is inferred from both prior knowledge (interactions extracted from biomedical literature and structured biological databases) and gene expression data. A prediction model is fitted for each gene, given its parents, enabling assessment of the predictive ability of the network model.

Proper citation: Predictive Networks (RRID:SCR_006110) Copy   


  • RRID:SCR_006636

http://ligand-expo.rutgers.edu/

An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.

Proper citation: Ligand Expo (RRID:SCR_006636) Copy   


  • RRID:SCR_013275

    This resource has 10+ mentions.

http://www.genesigdb.org

Database of traceable, standardized, annotated gene signatures which have been manually curated from publications that are indexed in PubMed. The Advanced Gene Search will perform a One-tailed Fisher Exact Test (which is equivalent to Hypergeometric Distribution) to test if your gene list is over-represented in any gene signature in GeneSigDB. Gene expression studies typically result in a list of genes (gene signature) which reflect the many biological pathways that are concurrently active. We have created a Gene Signature Data Base (GeneSigDB) of published gene expression signatures or gene sets which we have manually extracted from published literature. GeneSigDB was creating following a thorough search of PubMed using defined set of cancer gene signature search terms. We would be delighted to accept or update your gene signature. Please fill out the form as best you can. We will contact you when we get it and will be happy to work with you to ensure we accurately report your signature. GeneSigDB is capable of providing its functionality through a Java RESTful web service.

Proper citation: GeneSigDB (RRID:SCR_013275) Copy   


  • RRID:SCR_013814

    This resource has 1+ mentions.

http://www.ncbi.nlm.nih.gov/pmc/about/pubreader/

A web application which serves as an alternate way to read scientific literature in PubMed Central and Bookshelf. PubReader features an easy-to-read multi-column display, a figure strip for access to figures, and a search function. It is designed especially to support reading on tablets and other smaller devices but is available for reading on laptops and desktops.

Proper citation: PubReader (RRID:SCR_013814) Copy   


http://www.i2b2.org

i2b2 (Informatics for Integrating Biology and the Bedside) is an NIH-funded National Center for Biomedical Computing based at Partners HealthCare System. The i2b2 Center is developing a scalable informatics framework that will enable clinical researchers to use existing clinical data for discovery research and, when combined with IRB-approved genomic data, facilitate the design of targeted therapies for individual patients with diseases having genetic origin. For some resources (e.g. software) the use of the resource requires accepting a specific (e.g. OpenSource) license.

Proper citation: Informatics for Integrating Biology and the Bedside (RRID:SCR_013629) Copy   


  • RRID:SCR_014120

http://www.nitrc.org/projects/hdbig/

A collection of software tools for high dimensional brain imaging genomics. These tools are designed to perform comprehensive joint analysis of heterogeneous imaging genomics data. HDBIG-SR is an HDBIG toolkit for sparse regression while HDBIG-SCCA is an HDBIG toolkit for sparse association.

Proper citation: HDBIG (RRID:SCR_014120) Copy   


  • RRID:SCR_014165

    This resource has 100+ mentions.

http://www.nitrc.org/projects/score/

A collection of methods for comparing the performance of different image algorithms. These methods generate quantitative scores that measure divergences to a standard.

Proper citation: SCORE (RRID:SCR_014165) Copy   


https://bmrb.io

Public depository that collects, annotates, archives, and disseminates important spectral and quantitative data derived from nuclear magnetic resonance spectroscopic investigations of biological macromolecules and metabolites. Provides reference information and maintains a collection of NMR pulse sequences and computer software for biomolecular NMR.

Proper citation: Biological Magnetic Resonance Data Bank (BMRB) (RRID:SCR_002296) Copy   


http://druginfo.nlm.nih.gov/drugportal/drugportal.jsp

The NLM Drug Information Portal gives users a gateway to selected drug information from the U.S. National Library of Medicine and other key U.S. Government agencies. At the top of the page are links to individual resources with potential drug information, including summaries tailored to various audiences. Resources include the NLM search systems useful in searching for a drug, NLM research resources, resources organized by audience and class, and other NIH and government resources such as FDA and CDC. The search box in the middle of the page lets you search many of these resources simultaneously. More than 34,000 drugs can be searched using this facility. The portal covers drugs from the time they are entered into clinical trials (Clinicaltrials.gov) through their entry in the U.S. market place (Drugs@FDA). Many drugs in other countries are covered, but not as thoroughly as U.S. drugs. The PubMed link provides medical literature describing research, and TOXLINE provides toxicology literature. Resources such as MedlinePlus provide easy to read summaries of the uses and efficacy of a drug. You may search by a drug's trade name or generic name. For example, the trade name Advil and the generic name ibuprofen will retrieve the same drug record. As you type in a name, suggestions are given beneath the search box. A spell checker gives suggestions if the name is not found. You can find embedded portions of names by using an asterisk at the beginning and/or end of a search term. You can also search by the general Category of usage of a drug by checking that radio button. Suggestions are given as you type here too. Once a drug is found, a summary of the drug's type and usage is given, as well as links leading to further information at one of the portal's resources. Outside links open in a new window. Within a given drug record, you may click on the drug category and retrieve drugs with the same or similar uses. * View drug category descriptions. * View top By Name searches (previous seven days). * View top By Category searches (previous seven days). * View top dispensed prescriptions in the US Market, 2010. * View common drug name list. * View category name list. * View list of resources searched. JavaScript must be enabled in your browser for the NLM Drug Information Portal to work properly.

Proper citation: Drug Information Portal (RRID:SCR_002818) Copy   


  • RRID:SCR_016297

    This resource has 1+ mentions.

https://glimmpse.samplesizeshop.org/#/

Web based software tool that calculates power and sample size for study designs with normally distributed outcomes.

Proper citation: GLIMMPSE (RRID:SCR_016297) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X