Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://bioconductor.org/packages/release/bioc/html/oligo.html
Software package to analyze oligonucleotide arrays (expression/SNP/tiling/exon) at probe-level. It currently supports Affymetrix (CEL files) and NimbleGen arrays (XYS files).
Proper citation: oligo (RRID:SCR_015729) Copy
Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.
Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy
http://www.ctspedia.org/do/view/CTSpedia
CTSpedia is a national effort to collect wisdom, tools, educational materials, and other items useful for clinical and translational researchers and to provide timely and useful advice to clinical and translational researchers with specific problems. The CTSpedia is a collaborative vehicle for the CTSA''s Biostatistics/Epidemiology/Research/Design (BERD) Online Resources and Education taskforce to identify and share resources across the national consortium and community researchers world-wide. With the support of the national BERD consortia, the project obtained funding and support from the National Center for Research Resources (NCRR) to expand the original scope and content of CTSpedia and foster collaboration amongst CTSAs. The main goal of CTSpedia.org is to create a definable academic home on the internet for the discipline of clinical and translational sciences across the country and the world. * While the CTSA consortium serves the onsite physical level of the institutions involved, CTSpedia.org seeks to fill the gaps where the network is lacking, and to augment that network as the central hub for the peer to peer sharing of knowledge and resources. * While the CTSA national scope comes to fruition, the international scope of the consortia is more readily facilitated with an online resource like CTSpedia. * Utilizing the collaborative nature of the wiki-style website, CTSpedia.org allows for researchers anywhere in the world to ask questions and receive answers and related information in a timely and efficient manner, overcoming the logistical issues of distance and scheduling. * The streamlined availability of an online resource and knowledge repository will aid in addressing common issues that arise in clinical research, which will filter out consultation requests for minor questions, allowing for CTSA consultants to address more prevalent consultations.
Proper citation: CTSpedia (RRID:SCR_008733) Copy
http://meme.nbcr.net/meme/cgi-bin/gomo.cgi
Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy
An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).
Proper citation: iTools (RRID:SCR_009626) Copy
http://emg.nysbc.org/redmine/projects/appion/wiki/Appion_Home
Software package for processing and analysis of EM images. Appion is integrated with Leginon data acquisition but can also be used stand-alone after uploading images (either digital or scanned micrographs) or particle stacks using a set of provided tools.
Proper citation: Appion Package (RRID:SCR_016734) Copy
http://psf.cobre.ku.edu/cores/ppg/about
Core focuses on cloning, expression and purification of prokaryotic and eukaryotic proteins for COBRE and other investigators in Kansas and region. Laboratory maintains equipment to support production of properly folded proteins in quantities suitable for structural studies (X-ray and NMR), functional studies (catalytic or biological), label-free binding studies (SPR) and/or high throughput (HTP) screening studies.
Proper citation: Kansas University at Lawrence Protein Production Group Core Facility (RRID:SCR_017749) Copy
http://crl.berkeley.edu/molecular-imaging-center/
Microscopy core specializing in laser based fluorescence techniques. Offers training and expertise in 20 different microscope systems, including live cell and in vivo imaging, laser scanning (LSM) and spinning disk (SDC) confocal, multi-photon (2p), fluorescent lifetime imaging (FLIM), light-sheet microscopy (SPIM), super resolution (Airyscan), slide scanning and patterned illumination for optogenetic manipulation and readout. Provides offline computer analysis workstations for image processing, visualization and analysis, including GPU workstations. MIC operates in 3 different buildings on campus, with primary locations in Life Sciences Addition (LSA), North-side core in Barker Hall, and small outpost in Li Ka Shing Center for Biomedical and Health Sciences (LKS).Provides equipment in categories:Confocal and multi photon laser scanning microscopes,Spinning disk confocal microscopes,Lightsheet (SPIM) microscopes,Epifluorescence/widefield scopes and Computer workstations.
Proper citation: University of California at Berkeley Cancer Research Laboratory Molecular Imaging Center Core Facility (RRID:SCR_017852) Copy
http://bioimaging.dbi.udel.edu
Microscopy facility that houses equipment including confocal microscopes: LSM780 confocal microscope (Located at CBBI),LSM880 confocal microscope (Located at DBI 117),electron microscopes and their accessory instrumentation:Thermo Scientific Apreo VS SEM microscope,Hitachi S-4700, Leica EM ACE600 and Tousimis Autosamdri-815B,CX7 high content analysis system. Our staff has technical expertise across different microscopy platforms and methodologies.
Proper citation: University of Delaware BioImaging Center Core Facility (RRID:SCR_017814) Copy
Core provides imaging equipment including JEOL 1400 transmission electron microscope with AMT 11 megapixel digital camera,JEOL JSM 6060 scanning electron microscope with attached Oxford INCA energy dispersive spectroscopy detector for element analysis,Nikon Air HD confocal scanning laser microscope, Nikon C2 confocal scanning laser microscope, Andor Spinning Disk confocal microscope, Zeiss LSM 7 Multiphoton confocal microscope, Nikon STORM super-resolution light microscope, Olympus BX50 research microscope for transmitted light, phase contrast, and epi-fluorescence microscopy, Asylum Research MFP-3D BIO atomic force microscope, Asylum Research Cypher Environmental atomic force microscope,Arcturus XT-Ti Laser Capture Microdissector system, Olympus IX70 inverted microscope with associated Applied BioPhysics Electri Cell-Substrate Impedance Sensing (ECIS Ztheta) system, Leica VERSA 8 whole slide imager, Dell workstations containing Molecular Devices MetaMorph image analysis software for complex quantitative image analysis, Indica Labs HALO software, Improvision Volocity, MBR StereoInvestigator.
Proper citation: Vermont University Larner College of Medicine Microscopy Imaging Center Core Facility (RRID:SCR_018821) Copy
http://nemoursresearch.org/cores/bcl/
Develops research projects in pediatric genetics and provides essential services in molecular biology and genetics to Nemours clinicians and research staff and to affiliates researchers of University of Delaware and Thomas Jefferson University. Resource for staff of Alfred I. duPont Hospital for Children, Nemours affiliates, COBRE / INBRE investigators and outside customers. Offers expertise in molecular genetics and genomics. Operates according to policies set forth by federal CLIA standards.Services provided include Ion Torrent PGM Next Generation Sequencing, QuantStudio (QS) 3D Digital PCR, Cell Line Authentication, Nucleic Acid Quality Number (AATI Fragment Analyzer),Genotyping including Allelic Discrimination Probes (SNP Real-Time PCR), Affymetrix Microarray (CNV CytoScan, SNP arrays), Fragment Analysis (Capillary Electrophoresis up to 1200 bp), DNA Sequencing (Sanger Sequencing), Expression Analysis including Affymetrix Microarray (global gene expression, transcriptome assays), Pathway-focused Real-Time qPCR (mRNA and miRNA). Shared Instrumentation including Beckman Biomek 3000 Liquid Handler, NanoDrop 2000c, ABI7900 384-well Real-Time Genetic Analyzer, PCR Tamer, Thermocyclers.
Proper citation: Nemours Biomolecular Core Facility (RRID:SCR_018265) Copy
Web platform that provides access to data and tools to study complex networks of genes, molecules, and higher order gene function and phenotypes. Sequence data (SNPs) and transcriptome data sets (expression genetic or eQTL data sets). Quantitative trait locus (QTL) mapping module that is built into GN is optimized for fast on-line analysis of traits that are controlled by combinations of gene variants and environmental factors. Used to study humans, mice (BXD, AXB, LXS, etc.), rats (HXB), Drosophila, and plant species (barley and Arabidopsis). Users are welcome to enter their own private data.
Proper citation: GeneNetwork (RRID:SCR_002388) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.
Proper citation: Macaque.org (RRID:SCR_002767) Copy
Portal provides list of software resources. LONI is leader in development of advanced computational algorithms and software for comprehensive and quantitative mapping of brain structure and function. Aims to encourage communication between users and LONI software engineers in order to improve effectiveness.
Proper citation: University of Southern California LONI Software (RRID:SCR_002802) Copy
http://www.loni.usc.edu/Software/FFT
Java library used for the execution of discrete Fourier transforms in 1-D, 2-D and 3-D through the implementation of Fast Fourier Transform (FFT) algorithms. * The FFT library has been written in Java for portability across different platforms, integrated into a single jar file for easy implementation. * The FFT library provides forward and backward fast Fourier transforms in 1-D, 2-D and 3-D with an easy-to-use manner. * The FFT requires the length equal to a number with an integer power of two. This library automatically examines the input data and detects the length to prevent improper execution.
Proper citation: FFT Library (RRID:SCR_002698) Copy
http://www.LONI.usc.edu/Software/ShapeViewer
Java-based geometry viewer that supports file formats used by Center for Computational Biology (CCB) researchers and provides necessary viewing functions. ShapeViewer uses ShapeTools library support to read and display LONI Ucf, VTX XML, FreeSurfer, Minc Obj (both binary and ascii), Open Dx, Gifti, and OFF format data files.
Proper citation: LONI ShapeViewer (RRID:SCR_002695) Copy
http://www.loni.usc.edu/Software/SHIVA
A Java-based visualization and analysis application that can process 2D and 3D image files and provides convenient methods for users to overlay multiple datasets. * Simultaneous visualization of multiple image volumes. * Tools for labeling and masking of structures. * Framework for the Mouse Atlas Project.
Proper citation: Synchronized Histological Image Viewing Architecture (RRID:SCR_002690) Copy
National public repository system for mutant mice. Archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by biomedical research community. Includes breeding/distribution facilities and information coordinating center. Mice strains are cryopreserved, unless live colony must be established. Live mice are supplied from production colony, from colony recovered from cryopreservation, or via micro-injection of cell line into host blastocysts. MMRRC member facilities also develop technologies to improve handling of mutant mice, including advances in assisted reproductive techniques, cryobiology, genetic analysis, phenotyping and infectious disease diagnostics.
Proper citation: Mutant Mouse Resource and Research Center (RRID:SCR_002953) Copy
Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.
Proper citation: Sal-Site (RRID:SCR_002850) Copy
http://www.jax.org/smsr/index.html
Resource of special strains of mice that are valuable tools for genetic analysis of complex diseases. They include panels of recombinant inbred (RI) and chromosome substitution (CS) strains.
Proper citation: Special Mouse Strains Resource (RRID:SCR_002885) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.