Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 568 results
Snippet view Table view Download 568 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_008819

    This resource has 1+ mentions.

http://HIVBrainSeqDB.org

The HIV Brain Sequence Database (HIVBrainSeqDB) is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. For inclusion in the database, sequences must: (i) be deposited in Genbank; (ii) include some portion of the HIV env region; (iii) be clonal, amplified directly from tissue; and (iv) be sampled from the brain, or sampled from a patient for which the database already contains brain sequence. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i) brain, brainstem, and spinal cord; (ii) meninges, choroid plexus, and CSF; (iii) blood and lymphoid; and (iv) other (bone marrow, colon, lung, liver, etc). Currently, the database contains 2517 envelope sequences from 90 patients, obtained from 22 published studies. 1272 sequences are from brain; the remaining 1245 are from blood, lymph node, spleen, bone marrow, colon, lung and other non-brain tissues. The database interface utilizes a faceted interface, allowing real-time combination of multiple search parameters to assemble a meta-dataset, which can be downloaded for further analysis. This online resource will greatly facilitate analysis of the genetic aspects of HIV macrophage tropism, HIV compartmentalization and evolution within the brain and other tissue reservoirs, and the relationship of these findings to HIV-associated neurological disorders and other clinical consequences of HIV infection.

Proper citation: HIV Brain Sequence Database (RRID:SCR_008819) Copy   


http://indel.bioinfo.sdu.edu.cn/gridsphere/gridsphere

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Indel Flanking Region Database is an online resource for indels and the flanking regions of proteins in SCOP superfamilies, including amino acid sequences, lengths, locations, secondary structure constitutions, hydrophilicity / hydrophobicity, domain information, 3D structures and so on. It aims at providing a comprehensive dataset for analyzing the qualities of amino acid insertion/deletions(indels), substitutions and the relationship between them. The indels were obtained through the pairwise alignment of homologous structures in SCOP superfamilies. The IndelFR database contains 2,925,017 indels with flanking regions extracted from 373,402 structural alignment pairs of 12,573 non-redundant domains from 1053 superfamilies. IndelFR has already been used for molecular evolution studies and may help to promote future functional studies of indels and their flanking regions.

Proper citation: IndelFR - Indel Flanking Region Database (RRID:SCR_006050) Copy   


  • RRID:SCR_006014

    This resource has 1+ mentions.

http://www.ebi.ac.uk/thornton-srv/databases/FunTree/

FunTree provides a range of data resources to detect the evolution of enzyme function within distant structurally related clusters within domain super families as determined by CATH. To access the resource enter a specific CATH superfamily code or search for a structure / sequence / function (either via a EC code or KEGG ligand / reaction ID, PDB ID or UniProtKB ID). Or browse the resource via superfamily / function / structure / metabolites & reactions via the menu on the left panel. FunTree is a new resource that brings together sequence, structure, phylogenetic, chemical and mechanistic information for structurally defined enzyme superfamilies. Gathering together this range of data into a single resource allows the investigation of how novel enzyme functions have evolved within a structurally defined superfamily as well as providing a means to analyse trends across many superfamilies. This is done not only within the context of an enzyme''''s sequence and structure but also the relationships of their reactions. Developed in tandem with the CATH database, it currently comprises 276 superfamilies covering 1800 (70%) of sequence assigned enzyme reactions. Central to the resource are phylogenetic trees generated from structurally informed multiple sequence alignments using both domain structural alignments supplemented with domain sequences and whole sequence alignments based on commonality of multi-domain architectures. These trees are decorated with functional annotations such as metabolite similarity as well as annotations from manually curated resources such the catalytic site atlas and MACiE for enzyme mechanisms.

Proper citation: FunTree (RRID:SCR_006014) Copy   


http://www.hpppi.iicb.res.in/btox/

Database of Bacterial ExoToxins for Human is a database of sequences, structures, interaction networks and analytical results for 229 exotoxins, from 26 different human pathogenic bacterial genus. All toxins are classified into 24 different Toxin classes. The aim of DBETH is to provide a comprehensive database for human pathogenic bacterial exotoxins. DBETH also provides a platform to its users to identify potential exotoxin like sequences through Homology based as well as Non-homology based methods. In homology based approach the users can identify potential exotoxin like sequences either running BLASTp against the toxin sequences or by running HMMER against toxin domains identified by DBETH from human pathogenic bacterial exotoxins. In Non-homology based part DBETH uses a machine learning approach to identify potential exotoxins (Toxin Prediction by Support Vector Machine based approach).

Proper citation: DBETH - Database for Bacterial ExoToxins for Humans (RRID:SCR_005908) Copy   


http://www.kabatdatabase.com/

The Kabat Database determines the combining site of antibodies based on the available amino acid sequences. The precise delineation of complementarity determining regions (CDR) of both light and heavy chains provides the first example of how properly aligned sequences can be used to derive structural and functional information of biological macromolecules. The Kabat database now includes nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules, and other proteins of immunological interest. The Kabat Database searching and analysis tools package is an ASP.NET web-based portal containing lookup tools, sequence matching tools, alignment tools, length distribution tools, positional correlation tools and much more. The searching and analysis tools are custom made for the aligned data sets contained in both the SQL Server and ASCII text flat file formats. The searching and analysis tools may be run on a single PC workstation or in a distributed environment. The analysis tools are written in ASP.NET and C# and are available in Visual Studio .NET 2003/2005/2008 formats. The Kabat Database was initially started in 1970 to determine the combining site of antibodies based on the available amino acid sequences at that time. Bence Jones proteins, mostly from human, were aligned, using the now-known Kabat numbering system, and a quantitative measure, variability, was calculated for every position. Three peaks, at positions 24-34, 50-56 and 89-97, were identified and proposed to form the complementarity determining regions (CDR) of light chains. Subsequently, antibody heavy chain amino acid sequences were also aligned using a different numbering system, since the locations of their CDRs (31-35B, 50-65 and 95-102) are different from those of the light chains. CDRL1 starts right after the first invariant Cys 23 of light chains, while CDRH1 is eight amino acid residues away from the first invariant Cys 22 of heavy chains. During the past 30 years, the Kabat database has grown to include nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules and other proteins of immunological interest. It has been used extensively by immunologists to derive useful structural and functional information from the primary sequences of these proteins.

Proper citation: Kabat Database of Sequences of Proteins of Immunological Interest (RRID:SCR_006465) Copy   


  • RRID:SCR_006610

    This resource has 500+ mentions.

http://rapdb.dna.affrc.go.jp/

Database that provides the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. RAP-DB contains clone positions, structures and functions of genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison.

Proper citation: RAP-DB (RRID:SCR_006610) Copy   


  • RRID:SCR_006729

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/CCDS/

Database (anonymous FTP) resulting from a collaborative effort to identify a core set of human and mouse protein coding regions that are consistently annotated and of high quality. The long term goal is to support convergence towards a standard set of gene annotations. Collaborators are EBI, NCBI, UCSC, WTSI and the initial results are also available from the participants'''' genome browser Web sites. In addition, CCDS identifiers are indicated on the relevant NCBI RefSeq and Entrez Gene records and in Map Viewer displays of RNA (RefSeq) and Gene annotations on the reference assembly.

Proper citation: Consensus CDS (RRID:SCR_006729) Copy   


  • RRID:SCR_006757

    This resource has 10+ mentions.

https://myhits.sib.swiss/

Database devoted to protein domains. It is also a collection of tools for the investigation of the relationships between protein sequences and motifs described on them.

Proper citation: MyHits (RRID:SCR_006757) Copy   


  • RRID:SCR_006843

    This resource has 10+ mentions.

http://www.ncbi.nlm.nih.gov/unists

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. Database of sequence tagged sites (STSs) derived from STS-based maps and other experiments. STSs are defined by PCR primer pairs and are associated with additional information such as genomic position, genes, and sequences. Chromosome maps are labeled by name of the originating organism, the map title, total markers, total UniSTSs and links to view maps as well as research documents available through PubMed, another NCBI database. The search functions within UniSTS allow the user to search by gene marker, chromosome, gene symbol and gene description terms to locate markers on specified genes. A representation of the UniSTS datasets is available by ftp. NOTE: All data from this resource have been moved to the Probe database, http://www.ncbi.nlm.nih.gov/probe. You can retrieve all UniSTS records by searching the probe database using the search term unists(properties). (use brackets insead of parenthesis). Additionally, legacy data remain on the NCBI FTP Site in the UniSTS Repository (ftp://ftp.ncbi.nih.gov/pub/ProbeDB/legacy_unists).

Proper citation: UniSTS (RRID:SCR_006843) Copy   


  • RRID:SCR_006680

    This resource has 1+ mentions.

http://www.mbio.ncsu.edu/RNaseP/home.html

Ribonuclease P is responsible for the 5''-maturation of tRNA precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria (and some Archaea) the RNA subunit alone is catalytically active in vitro, i.e. it is a ribozyme. The Ribonuclease P Database is a compilation of ribonuclease P sequences, sequence alignments, secondary structures, three-dimensional models and accessory information. The database contains information on bacterial, archaeal, and eukaryotic RNase P. The RNase P and protein sequences are available from phylogentically-arranged lists, individual sequences, or aligned in GenBank format. The database also provides secondary structures and 3D models, as well as movies, still images, and other accessory information.

Proper citation: RNase P Database (RRID:SCR_006680) Copy   


http://bond.unleashedinformatics.com/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.BOND, which requires registration of a free account, is a resource used to perform cross-database searches of available sequence, interaction, complex and pathway information. BOND integrates a range of component databases including GenBank and BIND, the Biomolecular Interaction Network Database. BOND contains 70+ million biological sequences, 33,000 structures, 38,000 GO terms, and over 200,000 human curated interactions contained in BIND, and is open access. BOND serves the interests of the developing global interactome effort encompassing the genomic, proteomic and metabolomic research communities. BOND is the first open access search resource to integrate sequence and interaction information. BOND integrates BLAST functionality, and contains a well-documented API. BOND also stores annotation links for sequences, including links to Genome Ontology descriptions, MedLine abstracts, taxon identifiers, associated structures, redundant sequences, sequence neighbors, conserved domains, data base cross-references, Online Mendalian Inheritance in Man identifiers, LocusLink identifiers and complete genomes. BIND on BOND The Biomolecular Interaction Network Database (BIND), a component database of BOND, is a collection of records documenting molecular interactions. The contents of BIND include high-throughput data submissions and hand-curated information gathered from the scientific literature. BIND is an interaction database with three classifications for molecular associations: molecules that associate with each other to form interactions, molecular complexes that are formed from one or more interaction(s) and pathways that are defined by a specific sequence of two or more interactions.Interactions A BIND record represents an interaction between two or more objects that is believed to occur in a living organism. A biological object can be a protein, DNA, RNA, ligand, molecular complex, gene, photon or an unclassified biological entity. BIND records are created for interactions which have been shown experimentally and published in at least one peer-reviewed journal. A record also references any papers with experimental evidence that support or dispute the associated interaction. Interactions are the basic units of BIND and can be linked together to form molecular complexes or pathways. The BIND interaction viewer is a tool to visualize and analyze molecular interactions, complexes and pathways. The BIND interaction viewer uses Ontoglyphs to display information about a protein via attributes such as molecular function, biological process and sub-cellular localization. Ontoglyphs allow to graphically and interactively explore interaction networks, by visualizing interactions in the context of 34 functional, 25 binding specificity and 24 sub-cellular localization Ontoglyphs categories. We will continue to provide an open access version of BOND, providing its subscribers with free, unlimited access to a core content set. But we are confident you will soon want to upgrade to BONDplus.

Proper citation: Biomolecular Object Network Databank (RRID:SCR_007433) Copy   


  • RRID:SCR_007545

    This resource has 1+ mentions.

http://biobases.ibch.poznan.pl/5SData/

A database on nucleotide sequences of 5S rRNAs and their genes. The database contains 1985 primary structures of 5S rRNA and 5S rDNA, and was last updated in 2002, according to the website. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms. The sequences for particular organisms can be retrieved as single files using a taxonomic browser or in multiple sequence structural alignments. The multiple sequence alignments of 5S ribosomal RNAs can be downloaded in TAB-delimited and FASTA formats.

Proper citation: 5S Ribosomal RNA Database (RRID:SCR_007545) Copy   


http://mips.gsf.de/genre/proj/ustilago/

The MIPS Ustilago maydis Genome Database aims to present information on the molecular structure and functional network of the entirely sequenced, filamentous fungus Ustilago maydis. The underlying sequence is the initial release of the high quality draft sequence of the Broad Institute. The goal of the MIPS database is to provide a comprehensive genome database in the Genome Research Environment in parallel with other fungal genomes to enable in depth fungal comparative analysis. The specific aims are to: 1. Generate and assemble Whole Genome Shotgun sequence reads yielding 10X coverage of the U. maydis genome 2. Integrate the genomic sequence assembly with physical maps generated by Bayer CropScience 3. Perform automated annotation of the sequence assembly 4. Align the strain 521 assembly with the FB1 assembly provided by Exelixis 5. Release the sequence assembly and results of our annotation and analysis to public Ustilago maydis is a basidiomycete fungal pathogen of maize and teosinte. The genome size is approximately 20 Mb. The fungus induces tumors on host plants and forms masses of diploid teliospores. These spores germinate and form haploid meiotic products that can be propagated in culture as yeast-like cells. Haploid strains of opposite mating type fuse and form a filamentous, dikaryotic cell type that invades plant tissue to reinitiate infection. Ustilago maydis is an important model system for studying pathogen-host interactions and has been studied for more than 100 years by plant pathologists. Molecular genetic research with U. maydis focuses on recombination, the role of mating in pathogenesis, and signaling pathways that influence virulence. Recently, the fungus has emerged as an excellent experimental model for the molecular genetic analysis of phytopathogenesis, particularly in the characterization of infection-specific morphogenesis in response to signals from host plants. Ustilago maydis also serves as an important model for other basidiomycete plant pathogens that are more difficult to work with in the laboratory, such as the rust and bunt fungi. Genomic sequence of U. maydis will also be valuable for comparative analysis of other fungal genomes, especially with respect to understanding the host range of fungal phytopathogens. The analysis of U. maydis would provide a framework for studying the hundreds of other Ustilago species that attack important crops, such as barley, wheat, sorghum, and sugarcane. Comparisons would also be possible with other basidiomycete fungi, such as the important human pathogen C. neoformans. Commercially, U. maydis is an excellent model for the discovery of antifungal drugs. In addition, maize tumors caused by U. maydis are prized in Hispanic cuisine and there is interest in improving commercial production. The complete putative gene set of the Broad Institute''s second release is loaded into the database and in addition all deviating putative genes from a putative gene set produced by MIPS with different gene prediction parameters are also loaded. The complete dataset will then be analysed, gene predictions will be manually corrected due to combined information derived from different gene prediction algorithms and, more important, protein and EST comparisons. Gene prediction will be restricted to ORFs larger than 50 codons; smaller ORFs will be included only if similarities to other proteins or EST matches confirm their existence or if a coding region was postulated by all prediction programs used. The resulting proteins will be annotated. They will be classified according to the MIPS classification catalogue receiving appropriate descriptions. All proteins with a known, characterized homolog will be automatically assigned to functional categories using the MIPS functional catalog. All extracted proteins are in addition automatically analysed and annotated by the PEDANT suite.

Proper citation: MIPS Ustilago maydis Database (RRID:SCR_007563) Copy   


  • RRID:SCR_002426

    This resource has 10+ mentions.

http://www.ebi.ac.uk/genomes

The EBI genomes pages give access to a large number of complete genomes including bacteria, archaea, viruses, phages, plasmids, viroids and eukaryotes. Methods using whole genome shotgun data are used to gain a large amount of genome coverage for an organism. WGS data for a growing number of organisms are being submitted to DDBJ/EMBL/GenBank. Genome entries have been listed in their appropriate category which may be browsed using the website navigation tool bar on the left. While organelles are all listed in a separate category, any from Eukaryota with chromosome entries are also listed in the Eukaryota page. Within each page, entries are grouped and sorted at the species level with links to the taxonomy page for that species separating each group. Within each species, entries whose source organism has been categorized further are grouped and numbered accordingly. Links are made to: * taxonomy * complete EMBL flatfile * CON files * lists of CON segments * Project * Proteomes pages * FASTA file of Proteins * list of Proteins

Proper citation: EBI Genomes (RRID:SCR_002426) Copy   


  • RRID:SCR_003169

    This resource has 10+ mentions.

http://www.broad.mit.edu/annotation/fungi/fgi/

Produces and analyzes sequence data from fungal organisms that are important to medicine, agriculture and industry. The FGI is a partnership between the Broad Institute and the wider fungal research community, with the selection of target genomes governed by a steering committee of fungal scientists. Organisms are selected for sequencing as part of a cohesive strategy that considers the value of data from each organism, given their role in basic research, health, agriculture and industry, as well as their value in comparative genomics.

Proper citation: Fungal Genome Initiative (RRID:SCR_003169) Copy   


  • RRID:SCR_008524

    This resource has 1+ mentions.

http://www.sanger.ac.uk/Projects/Fungi/

Fungal genomes available from the Sanger Institute. Data are accessible in a number of ways; for each organism there is a BLAST server, allowing search of the sequences. Sequences can also be down-loaded directly by FTP. In addition, for those organisms being sequenced using a cosmid approach, finished and annotated cosmids are submitted to EMBL and other public databases.

Proper citation: Fungi Sequencing Projects (RRID:SCR_008524) Copy   


  • RRID:SCR_006262

    This resource has 1+ mentions.

http://linux1.softberry.com/spldb/SpliceDB.html

Database of canonical and non-canonical mammalian splice sites. The information about verified splice site sequences for canonical and non-canonical sites is presented with the supporting evidence. Weight matrices were built for the major splice groups, which can be incorporated into gene prediction programs.

Proper citation: SpliceDB (RRID:SCR_006262) Copy   


  • RRID:SCR_000400

    This resource has 1+ mentions.

http://www.ncbi.nlm.nih.gov/dbSTS/

THIS RESOURCE IS NO LONGER IN SERVICE, as of October 1, 2013; however, the site is still accessible. NCBI resource that contains sequence and mapping data on short genomic landmark sequences or Sequence Tagged Sites. STS sequences are incorporated into the STS Division of GenBank. The dbSTS database offers a route for submission of STS sequences to GenBank. It is designed especially for the submission of large batches of STS sequences.

Proper citation: dbSTS (RRID:SCR_000400) Copy   


  • RRID:SCR_000755

    This resource has 1+ mentions.

http://interolog.gersteinlab.org/

Interolog/Regulog quantitatively assess the degree to which interologs can be reliably transferred between species as a function of the sequence similarity of the corresponding interacting proteins.

Proper citation: Interolog/Regulog Database (RRID:SCR_000755) Copy   


  • RRID:SCR_001618

    This resource has 50+ mentions.

http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi

Database and browser that provides a central resource to archive and display association between genetic variation and high-throughput molecular-level phenotypes. This effort originated with the NIH GTEx roadmap project: however the scope of this resource will be extended to include any available genotype/molecular phenotype datasets.

Proper citation: GTEx eQTL Browser (RRID:SCR_001618) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X