Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Data resource that includes a large collection of genome-wide ChIP-Seq experiments performed on transcription factors (TFs), histone modifications, RNA polymerases and others. Enriched peak regions from the ChIP-Seq experiments are crossed with the genomic coordinates of a set of input genes, to identify which of the experiments present a statistically significant number of peaks within the input genes' loci. The input can be a cluster of co-expressed genes, or any other set of genes sharing a common regulatory profile. Users can thus single out which TFs are likely to be common regulators of the genes, and their respective correlations. Also, by examining results on promoter activation, transcription, histone modifications, polymerase binding and so on, users can investigate the effect of the TFs (activation or repression of transcription) as well as of the cell or tissue specificity of the genes' regulation and expression.
Proper citation: Cscan (RRID:SCR_006756) Copy
http://www.ini.uzh.ch/~acardona/data.html
30 sections from a serial section Transmission Electron Microscopy (ssTEM) data set of the Drosophila first instar larva ventral nerve cord (VNC). The microcube measures 2 x 2 x 1.5 microns approx., with a resolution of 4x4x50 nm/pixel. The images are representative of actual images in the real-world: there is a bit of noise; there are image registration errors; there is even a small stitching error in one section. None of these led to any difficulties in the manual labeling of each element in the image stack by an expert human neuroanatomist. A software application that aims at removing or reducing human operation must be able to cope with all these issues. Each labeled object has a unique id and fits into the overall datastructure of the data set. For example, each mitochondria is represented by a unique Arealist object, containing a list of labeled areas, one per section. All membranes have been highlighted as one unique object. All neurites (and glia) have been highlighted each as its own independent object, delimited by membrane and non-overlapping with membrane and with each other. On the other hand, mitochondria, noise and synapses overlap with membranes, neurites and glia; hence, they are offered as independent tif stacks.
Proper citation: Segmented ssTEM stack of neural tissue (RRID:SCR_007004) Copy
http://text0.mib.man.ac.uk/software/mldic/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 9, 2022. System that retrieves relevant UniProt IDs from BioThesaurus entries using a soft string matching algorithm.
Proper citation: Smart Dictionary Lookup (RRID:SCR_000568) Copy
Web-based microarray data analysis and visualization system powered by CRC, or Chinese Restaurant cluster, a Dirichlet process model-based clustering algorithm recently developed by Dr. Steve Qin. It also incorporates several gene expression analysis programs from Bioconductor, including GOStats, genefilter, and Heatplus. CRCView also installs from the Bioconductor system 78 annotation libraries of microarray chips for human (31), mouse (24), rat (14), zebrafish (1), chicken (1), Drosophila (3), Arabidopsis (2), Caenorhabditis elegans (1), and Xenopus Laevis (1). CRCView allows flexible input data format, automated model-based CRC clustering analysis, rich graphical illustration, and integrated Gene Ontology (GO)-based gene enrichment for efficient annotation and interpretation of clustering results. CRC has the following features comparing to other clustering tools: 1) able to infer number of clusters, 2) able to cluster genes displaying time-shifted and/or inverted correlations, 3) able to tolerate missing genotype data and 4) provide confidence measure for clusters generated. You need to register for an account in the system to store your data and analyses. The data and results can be visited again anytime you log in.
Proper citation: CRCView (RRID:SCR_007092) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.