Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://fairbrother.biomed.brown.edu/spliceman/index.cgi
An online tool that takes a set of DNA sequences with point mutations and returns a ranked list to predict the effects of point mutations on pre-mRNA splicing. The current implementation includes 11 genomes: human, chimp, rhesus, mouse, rat, dog, cat, chicken, guinea pig, frog and zebrafish.
Proper citation: Spliceman (RRID:SCR_005354) Copy
http://genetrail.bioinf.uni-sb.de/
A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes.
Proper citation: GeneTrail (RRID:SCR_006250) Copy
http://cbl-gorilla.cs.technion.ac.il/
A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.
Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented December 31, 2013. An interactive atlas and 3D brain software for research, structure analysis, and education, it offers six atlases representing four species: the mouse, rat, monkey and human. The stereotaxic coordinates atlases are available for all four species and the rodent models have additional chemoarchitectonic atlases. BrainNavigator helps locate specific areas of the brain, making visualizing and experimental planning in the brain easier. *Plan: Browse 6 Atlases, Visualize with 3D models, Search Literature, Analyze gene expression, Identify connections *Publish: Access reference tools, Use and print images for publication, Search literature *Propose: Use and print images for proposals, Search literature, Locate gene expression in 2D and 3D, Identify connections *Produce: Simulate injections, Customize new coordinates, virtually slice sections, overlay atlas maps on your own images, create personal atlas maps With BrainNavigator, you''ll gain 24/7 access to their powerful 3D brain interactive software tool that helps further research in the neurosciences. In addition, their vast library of widely respected and referenced brain publications will provide a plethora of information on the most current brain research available. As publisher of the gold standard in brain atlas publications authored by the team around the leading brain cartographers George Paxinos and Charles Watson, they are pleased to bring an advanced tool to today''s neuroscientists and educators. Combining atlas content and 3D capabilities based on technologies from the Allen Institute for Brain Science, this online workflow solution brings brain research, analysis and education tools to your fingertips.
Proper citation: BrainNavigator (RRID:SCR_008289) Copy
http://www.civm.duhs.duke.edu/neuro2012ratatlas/
Multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). The atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies. To access the atlas, click view supplementary materials in CIVMSpace at the bottom of the following webpage.
Proper citation: Adult Wistar Rat Atlas (RRID:SCR_006288) Copy
http://www.homozygositymapper.org/
A web-based approach of homozygosity mapping that can handle tens of thousands markers. User can upload their own SNP genotype files to the database. Intuitive graphic interface is provided to view the homozygous stretches, with the ability of zooming into single chromosomes or user-defined chromosome regions. The underlying genotypes in all samples are displayed. The software is also integrated with our candidate gene search engine, GeneDistiller, so that users can interactively determine the most promising gene. (entry from Genetic Analysis Software)
Proper citation: HOMOZYGOSITYMAPPER (RRID:SCR_001714) Copy
A web-based tool to support meta-analysis of multiple gene-expression data sets, as well as to enable integration of data sets from gene expression and metabolomics experiments. INMEX contains three functional modules. The data preparation module supports flexible data processing, annotation and visualization of individual data sets. The statistical analysis module allows researchers to combine multiple data sets based on P-values, effect sizes, rank orders and other features. The significant genes can be examined in functional analysis module for enriched Gene Ontology terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, or expression profile visualization. INMEX has built-in support for common gene/metabolite identifiers (IDs), as well as 45 popular microarray platforms for human, mouse and rat. Complex operations are performed through a user-friendly web interface in a step-by-step manner.
Proper citation: INMEX (RRID:SCR_004173) Copy
Web server based on the Enhancer Identification (EI) method, to determine the chromosomal location and functional characteristics of distant regulatory elements (REs) in higher eukaryotic genomes. The server uses gene co-expression data, comparative genomics, and combinatorics of transcription factor binding sites (TFBSs) to find TFBS-association signatures that can be used for discriminating specific regulatory functions. DiRE's unique feature is the detection of REs outside of proximal promoter regions, as it takes advantage of the full gene locus to conduct the search. DiRE can predict common REs for any set of input genes for which the user has prior knowledge of co-expression, co-function, or other biologically meaningful grouping. The server predicts function-specific REs consisting of clusters of specifically-associated TFBSs, and it also scores the association of individual TFs with the biological function shared by the group of input genes. Its integration with the Array2BIO server allows users to start their analysis with raw microarray expression data.
Proper citation: Distant Regulatory Elements (RRID:SCR_003058) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 17,2023. A database of genes and interventions connected with aging phenotypes including those with respect to their effects on life-span or age-related neurological diseases. Information includes: organism, aging phenotype, allele type, strain, gene function, phenotypes, mutant, and homologs. If you know of published data (or your own unpublished data that you'd like to share) not currently in the database, please use the Submit a Gene/Intervention link.
Proper citation: Aging Genes and Interventions Database (RRID:SCR_002701) Copy
The Rodent Brain WorkBench is the portal to atlases, databases and tools developed by the Neural Systems and Graphics Computing Laboratory (NeSys) at the Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo, Oslo, Norway. The Rodent Brain WorkBench presents a collection of brain mapping and atlasing oriented database applications and tools. The main category of available data is high resolution mosaic images covering complete histological sections through the rat and mouse brain. A highly structured relational database system for archiving, retrieving, viewing, and analysing microscopy and imaging data, aiming at presentation in standardized brain atlas space, is used to present a series of web applications for individual research projects. * Brain Connectivity * Atlases of Mouse Brain Promoter Gene Expression * General Brain Atlas and Navigation Systems * Downloadable tools for 3-DVisualization Open Access: * Atlas 3D * Cerebro-Cerebellar I * Cerebro-Cerebellar II * Neurotransporter Atlas * Rat Hippocampus * Tet-Off Atlas I (PrP) * Tet-Off Atlas II (PrP/CamKII) * Whole Brain Connectivity Atlas The data presented have been produced in collaboration with a large number of laboratories in Europe and the United States.
Proper citation: Rodent Brain WorkBench (RRID:SCR_002727) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures
Proper citation: SumsDB (RRID:SCR_002759) Copy
Database of known and predicted mammalian and eukaryotic protein-protein interactions, it is designed to be both a resource for the laboratory scientist to explore known and predicted protein-protein interactions, and to facilitate bioinformatics initiatives exploring protein interaction networks. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered predictions. It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. It contains 490,600 Source Interactions, 370,002 Predicted Interactions, for a total of 846,116 interactions, and continues to expand as new protein-protein interaction data becomes available.
Proper citation: I2D (RRID:SCR_002957) Copy
http://braininfo.rprc.washington.edu
Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.
Proper citation: BrainInfo (RRID:SCR_003142) Copy
Portal for preclinical information and research materials, including web-accessible data and tools, NCI-60 Tumor Cell Line Screen, compounds in vials and plates, tumor cells, animals, and bulk drugs for investigational new drug (IND)-directed studies. DTP has been involved in the discovery or development of more than 70 percent of the anticancer therapeutics on the market today, and will continue helping the academic and private sectors to overcome various therapeutic development barriers, particularly through supporting high-risk projects and therapeutic development for rare cancers. Initially DTP made its drug discovery and development services and the results from the human tumor cell line assay publicly accessible to researchers worldwide. At first, the site offered in vitro human cell line data for a few thousand compounds and in vitro anti-HIV screening data for roughly 42,000 compounds. Today, visitors can find: * Downloadable in vitro human tumor cell line data for some 43,500 compounds and 15,000 natural product extracts * Results for 60,000 compounds evaluated in the yeast assay * In vivo animal model results for 30,000 compounds * 2-D and 3-D chemical structures for more than 200,000 compounds * Molecular target data, including characterizations for at least 1,200 targets, plus data from multiple cDNA microarray projects In addition to browsing DTP's databases and downloading data, researchers can request individual samples or sets of compounds on 96-well plates for research, or they can submit their own compounds for consideration for screening via DTP's online submission form. Once a compound is submitted for screening, researchers can follow its progress and retrieve data using a secure web interface. The NCI has collected information on almost half a million chemical structures in the past 50 years. DTP has made this information accessible and useful for investigators through its 3-D database, a collection of three-dimensional structures for more than 200,000 drugs. Investigators use the 3-D database to screen compounds for anticancer therapeutic activity. Also available on DTP's website are 127,000 connection tables for anticancer agents. A connection table is a convenient way of depicting molecular structures without relying on drawn chemical structures. As unique lists of atoms and their connections, the connection tables can be indexed and stored in computer databases where they can be used for patent searches, toxicology studies, and precursor searching, for example.
Proper citation: Developmental Therapeutics Program (RRID:SCR_003057) Copy
http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=renal
An integrated resource for information on genes, QTLs and strains associated with a variety of kidney and renal system conditions such as Renal Hypertension, Polycystic Kidney Disease and Renal Insufficiency, as well as Kidney Neoplasms.
Proper citation: Renal Disease Portal (RRID:SCR_009030) Copy
A genome browser that includes mappings between genomic features and Affymetrix microarrays. Associated with annmap is: * a Bioconductor package, annmap that provides programmatic access to the underlying MySQL database tables (which are freely available for download on this site) * xmapbridge, a Bioconductor package that outputs numeric data in a form suitable for presentation in the browser. This is supported by XMapBridge, a Java client that sits on the local desktop and performs the graph rendering for the browser.
Proper citation: Annmap (RRID:SCR_011783) Copy
http://mitobreak.portugene.com/cgi-bin/Mitobreak_home.cgi
Database with curated datasets of mitochondrial DNA (mtDNA) rearrangements. Users may submit new mtDNA rearrangements.
Proper citation: MitoBreak (RRID:SCR_012949) Copy
http://www.rcsb.org/#Category-welcome
Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.
Proper citation: Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (RRID:SCR_012820) Copy
http://uswest.ensembl.org/info/docs/variation/index.html
Public database that stores areas of genome that differ between individual genomes (variants) and, where available, associated disease and phenotype information. Different types of variants for several species: single nucleotide polymorphisms (SNPs), short nucleotide insertions and/or deletions, and longer variants classified as structural variants (including CNVs). Effects of variants on the Ensembl transcripts and regulatory features for each species are predicted. You can run same analysis on your own data using Variant Effect Predictor. These data are integrated with other data sources in Ensembl, and can be accessed using the API or website. For several different species in Ensembl, they import variation data (SNPs, CNVs, allele frequencies, genotypes, etc) from a variety of sources (e.g. dbSNP). Imported variants and alleles are subjected to quality control process to flag suspect data. In human, they calculate linkage disequilibrium for each variant, by population.
Proper citation: Ensembl Variation (RRID:SCR_001630) Copy
Website for analyzing microarray data. Software toolbox for storing, analyzing and integrating microarray data and related genotype and phenotype data. The site is particularly suited for combining QTL and microarray data to search for candidate genes contributing to complex traits. In addition, the site allows, if desired by the investigators, sharing of the data. Investigators can conduct in-silico microarray experiments using their own and/or shared data. There are five major sections of the site: Genome/Transcriptome Data Browser, Microarray Analysis Tools, Gene List Analysis Tools, QTL Tools, and Downloads. The genome/transcriptome data browser combines a genome browser with all the microarray, RNA-Seq, and Genomic Sequencing data. This provides an effective platform to view all of this data side by side. Source code is available on GitHub.
Proper citation: PhenoGen Informatics (RRID:SCR_001613) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.