Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 85 results
Snippet view Table view Download 85 Result(s)
Click the to add this resource to a Collection

http://www.med.umkc.edu/psychiatry/nbtb/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The UMKC Neuroscience Brain Tissue Bank and Research Laboratory has been established to obtain, process, and distribute human brain tissue to qualified scientists and clinicians dedicated to neuroscience research. No other living organ approaches the human brain in complexity or capacity. Healthy, it astounds and inspires miracles. Diseased, it confounds and diminishes hope. The use of human brain tissue for research will provide insight into the anatomical and neurochemical aspects of diseased and non-diseased brains. While animal models are helpful and necessary in understanding disease, certain disorders can be more efficiently studied using human brain tissue. Also, modern research techniques are often best applied to human tissue. We also need samples of brain tissue that have not been affected by disease. They help us to compare a 'normal' brain with a diseased one. Also, we have a critical need for brain donations from relatives who have genetically inherited disorders. Tissue preparation consists of fresh quick-frozen tissue blocks or coronal slices (nitrogen vapor frozen; custom dissection of specific anatomic regions) or formalin-fixed coronal slices (custom dissection of specific anatomic regions).

Proper citation: UMKC Neuroscience Brain Tissue Bank and Research Laboratory (RRID:SCR_005148) Copy   


  • RRID:SCR_006418

    This resource has 100+ mentions.

https://github.com/ding-lab/msisensor

A C++ software program for automatically detecting somatic and germline variants at microsatellite regions. It computes length distributions of microsatellites per site in paired tumor and normal sequence data, subsequently using these to statistically compare observed distributions in both samples.

Proper citation: MSIsensor (RRID:SCR_006418) Copy   


  • RRID:SCR_004879

    This resource has 1+ mentions.

http://www.capitalbiosciences.com/

Biological products including Cell Immortalization Products, Clinically Defined Human Tissue, cDNA ORF Clones, Premade Adenoviruses, Purified Proteins, Viral Expression Systems and others as well as services like Custom Recombinant Adenovirus Production, Custom Recombinant Lentivirus Production, Protein Detection and Quantification and Stable Cell Line Production for academic and governmental research institutes, pharmaceutical and biotechnology industry. Capital Biosciences offers most types of human tissues, normal and diseased, with extensive clinical history and follow up information. Standard specimen format: Snap-frozen(flash-frozen), Formalin fixed and paraffin embedded (FFPE) tissues, Blood and blood products, Bone marrow, Total RNA, Genomic DNA, Total Proteins, Primary cell cultures, Viable frozen tissue. Tumor tissue samples include: Bladder cancer, Glioblastoma, Medulloblastoma, Breast Carcinoma, Cervical Cancer, Colorectal Cancer, Endometrial Cancer, Esophageal Cancer, Head and Neck (H&N) Carcinoma, Hepatocellular Carcinoma (HCC), Hodgkin's lymphoma, Kidney, Renal Cell Carcinoma, Lung Cancer, Non-Small Cell (NCSLC), Lung Cancer, Small Cell (SCLC), Melanoma, Mesothelioma, non-Hodgkin's Lymphoma, Ovarian Adenocarcinoma, Pancreatic Cancer, Prostate Cancer, Stomach Cancer.

Proper citation: Capital Biosciences (RRID:SCR_004879) Copy   


  • RRID:SCR_005108

    This resource has 100+ mentions.

http://gmt.genome.wustl.edu/somatic-sniper/current/

Software program to identify single nucleotide positions that are different between tumor and normal (or, in theory, any two bam files). It takes a tumor bam and a normal bam and compares the two to determine the differences. It outputs a file in a format very similar to Samtools consensus format. It uses the genotype likelihood model of MAQ (as implemented in Samtools) and then calculates the probability that the tumor and normal genotypes are different. This probability is reported as a somatic score. The somatic score is the Phred-scaled probability (between 0 to 255) that the Tumor and Normal genotypes are not different where 0 means there is no probability that the genotypes are different and 255 means there is a probability of 1 ? 10(255/-10) that the genotypes are different between tumor and normal. This is consistent with how the SAM format reports such probabilities. It is currently available as source code via github or as a Debian APT package.

Proper citation: SomaticSniper (RRID:SCR_005108) Copy   


  • RRID:SCR_005107

    This resource has 50+ mentions.

http://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_sting_gatk_walkers_indels_SomaticIndelDetector.html

Tool for calling indels in Tumor-Normal paired sample mode.

Proper citation: SomaticIndelDetector (RRID:SCR_005107) Copy   


  • RRID:SCR_001196

http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/somaticcall-manual

Software program that finds single-base differences (substitutions) between sequence data from tumor and matched normal samples. It is designed to be highly stringent, so as to achieve a low false positive rate. It takes as input a BAM file for each sample, and produces as output a list of differences (somatic mutations). Note: This software package is no longer supported and information on this page is provided for archival purposes only.

Proper citation: SomaticCall (RRID:SCR_001196) Copy   


  • RRID:SCR_009023

    This resource has 10+ mentions.

http://hippocampome.org

A curated knowledge base of the circuitry of the hippocampus of normal adult, or adolescent, rodents at the mesoscopic level of neuronal types. Knowledge concerning dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex is distilled from published evidence and is continuously updated as new information becomes available. Each reported neuronal property is documented with a pointer to, and excerpt from, relevant published evidence, such as citation quotes or illustrations. Please note: This is an alpha-testing site. The content is still being vetted for accuracy and has not yet undergone peer-review. As such, it may contain inaccuracies and should not (yet) be trusted as a scholarly resource. The content does not yet appear uniformly across all combinations of browsers and screen resolutions.

Proper citation: Hippocampome.org (RRID:SCR_009023) Copy   


  • RRID:SCR_002102

    This resource has 1+ mentions.

http://srv00.ibbe.cnr.it/ASPicDB/

A database to access reliable annotations of the alternative splicing pattern of human genes, obtained by ASPic algorithm (Castrignano et al. 2006), and to the functional annotation of predicted isoforms. Users may select and extract specific sets of data related to genes, transcripts and introns fulfilling a combination of user-defined criteria. Several tabular and graphical views of the results are presented, providing a comprehensive assessment of the functional implication of alternative splicing in the gene set under investigation. ASPicDB also includes information on tissue-specific splicing patterns of normal and cancer cells, based on available EST data and their library source annotation.

Proper citation: ASPicDB (RRID:SCR_002102) Copy   


  • RRID:SCR_001147

    This resource has 1+ mentions.

http://bodymap.genes.nig.ac.jp/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A taxonomical and anatomical database of latest cross species animal EST data, clustered by UniGene and inter connected by Inparanoid. Users can search by Unigene, RefSeq, or Entrez Gene ID, or search for Gene Name or Tissue type. Data is also sortable and viewable based on qualities of normal, Neoplastic, or other. The last data import appears to be from 2008

Proper citation: BodyMap-Xs (RRID:SCR_001147) Copy   


https://sites.google.com/site/projectbci/

EEG motor activity data sets used for Brain Computer Interface research project in Matlab MAT format. * Dataset 1 - 1D motion: This subject is a 21 year old, right handed male with no known medical conditions. The EEG consists of actual random movements of left and right hand recorded with eyes closed. Each row represents one electrode. The order of the electrodes is FP1 FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 FZ CZ PZ. The recording was done at 500Hz using Neurofax EEG System which uses a daisy chain montage. The data was exported with a common reference using Eemagine EEG. AC Lines in this country work at 50 Hz. This info is also included in the MAT file. * Dataset 2 - 2D motion: This subject is a 21 year old, right handed male with no known medical conditions. The EEG consists of actual random movements of left and right hand recorded with eyes closed. Each row represents one electrode. The order of the electrodes is FP1 FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 FZ CZ PZ. The recording was done at 500Hz using Neurofax EEG System which uses a daisy chain montage. The data was exported with a common reference using Eemagine EEG. AC Lines in this country work at 50 Hz. This data consists of the following movements # Three trials left hand forward movement # Three trials left hand backward movement # Three trials left hand forward movement # Three trials left hand forward movement # 1 trial imagined left hand forward movement # 1 trial imagined left hand backward movement # 1 trial imagined right hand forward movement # 1 trial imagined right hand backward movement # 1 trial left leg movement # 1 trial right leg movement

Proper citation: Project BCI - EEG motor activity data set (RRID:SCR_001585) Copy   


http://www.orgids.com/

Data sets resulting from glaucoma research including visual fields, various imaging modalities and other data from both glaucomatous and normal subjects. The Longitudinal Glaucomatous Visual Fields data set contains IOP (Intraocular pressure) measurements and 24-2 Full Threshold visual fields obtained with a Humphrey Field Analyzer (Zeiss). Data of both eyes of 139 patients over a mean period of over 9 years is included, with on average more than 17 fields per eye. Local threshold and total deviation values are included.

Proper citation: Open Rotterdam Glaucoma Imaging Data Sets (RRID:SCR_003540) Copy   


http://www.radiologyresearch.org/HippocampusSegmentation.aspx

This dataset contains T1-weighted MR images of 50 subjects, 40 of whom are patients with temporal lobe epilepsy and 10 are nonepileptic subjects. Hippocampus labels are provided for 25 subjects for training. The users may submit their segmentation outcomes for the remaining 25 testing images to get a table of segmentation metrics.

Proper citation: MRI Dataset for Hippocampus Segmentation (RRID:SCR_009597) Copy   


http://www.humanconnectomeproject.org/

A multi-center project comprising two distinct consortia (Mass. Gen. Hosp. and USC; and Wash. U. and the U. of Minn.) seeking to map white matter fiber pathways in the human brain using leading edge neuroimaging methods, genomics, architectonics, mathematical approaches, informatics, and interactive visualization. The mapping of the complete structural and functional neural connections in vivo within and across individuals provides unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve conclusions about the living human brain. The HCP is being developed to employ advanced neuroimaging methods, and to construct an extensive informatics infrastructure to link these data and connectivity models to detailed phenomic and genomic data, building upon existing multidisciplinary and collaborative efforts currently underway. Working with other HCP partners based at Washington University in St. Louis they will provide rich data, essential imaging protocols, and sophisticated connectivity analysis tools for the neuroscience community. This project is working to achieve the following: 1) develop sophisticated tools to process high-angular diffusion (HARDI) and diffusion spectrum imaging (DSI) from normal individuals to provide the foundation for the detailed mapping of the human connectome; 2) optimize advanced high-field imaging technologies and neurocognitive tests to map the human connectome; 3) collect connectomic, behavioral, and genotype data using optimized methods in a representative sample of normal subjects; 4) design and deploy a robust, web-based informatics infrastructure, 5) develop and disseminate data acquisition and analysis, educational, and training outreach materials.

Proper citation: MGH-USC Human Connectome Project (RRID:SCR_003490) Copy   


http://www.pediatricmri.nih.gov/

Data sets of clinical / behavioral and image data are available for download by qualified researchers from a seven year, multi-site, longitudinal study using magnetic resonance technologies to study brain maturation in healthy, typically-developing infants, children, and adolescents and to correlate brain development with cognitive and behavioral development. The information obtained in this study is expected to provide essential data for understanding the course of normal brain development as a basis for understanding atypical brain development associated with a variety of developmental, neurological, and neuropsychiatric disorders affecting children and adults. This study enrolled over 500 children, ranging from infancy to young adulthood. The goal was to study each participant at least three times over the course of the project at one of six Pediatric Centers across the United States. Brain MR and clinical/behavioral data have been compiled and analyzed at a Data Coordinating Center and Clinical Coordinating Center. Additionally, MR spectroscopy and DTI data are being analyzed. The study was organized around two objectives corresponding to two age ranges at the time of enrollment, each with its own protocols. * Objective 1 enrolled children ages 4 years, 6 months through 18 years (total N = 433). This sample was recruited across the six Pediatric Study Centers using community based sampling to reflect the demographics of the United States in terms of income, race, and ethnicity. The subjects were studied with both imaging and clinical/behavioral measures at two year intervals for three time points. * Objective 2 enrolled newborns, infants, toddlers, and preschoolers from birth through 4 years, 5 months, who were studied three or more times at two Pediatric Study Centers at intervals ranging from three months for the youngest subjects to one year as the children approach the Objective 1 age range. Both imaging and clinical/behavioral measures were collected at each time point. Participant recruitment used community based sampling that included hospital venues (e.g., maternity wards and nurseries, satellite physician offices, and well-child clinics), community organizations (e.g., day-care centers, schools, and churches), and siblings of children participating in other research at the Pediatric Study Centers. At timepoint 1, of those enrolled, 114 children had T1 scans that passed quality control checks. Staged data release plan: The first data release included structural MR images and clinical/behavioral data from the first assessments, Visit 1, for Objective 1. A second data release included structural MRI and clinical/behavioral data from the second visit for Objective 1. A third data release included structural MRI data for both Objective 1 and 2 and all time points, as well as preliminary spectroscopy data. A fourth data release added cortical thickness, gyrification and cortical surface data. Yet to be released are longitudinally registered anatomic MRI data and diffusion tensor data. A collaborative effort among the participating centers and NIH resulted in age-appropriate MR protocols and clinical/behavioral batteries of instruments. A summary of this protocol is available as a Protocol release document. Details of the project, such as study design, rationale, recruitment, instrument battery, MRI acquisition details, and quality controls can be found in the study protocol. Also available are the MRI procedure manual and Clinical/Behavioral procedure manuals for Objective 1 and Objective 2.

Proper citation: NIH MRI Study of Normal Brain Development (RRID:SCR_003394) Copy   


  • RRID:SCR_006722

    This resource has 1+ mentions.

http://www.zfatlas.psu.edu/

Atlas containing 2- and 3-dimensional, anatomical reference slides of the lifespan of the zebrafish to support research and education worldwide. Hematoxylin and eosin histological slides, at various points in the lifespan of the zebrafish, have been scanned at 40x resolution and are available through a virtual slide viewer. 3D models of the organs are reconstructed from plastic tissue sections of embryo and larvae. The size of the zebrafish, which allows sections to fall conveniently within the dimensions of the common 1 x 3 glass slide, makes it possible for this anatomical atlas to become as high resolution as for any vertebrate. That resolution, together with the integration of histology and organ anatomy, will create unique opportunities for comparisons with both smaller and larger model systems that each have their own strengths in research and educational value. The atlas team is working to allow the site to function as a scaffold for collaborative research and educational activity across disciplines and model organisms. The Zebrafish Atlas was created to answer a community call for a comprehensive, web-based, anatomical and pathological atlas of the zebrafish, which has become one of the most widely used vertebrate animal models globally. The experimental strengths of zebrafish as a model system have made it useful for a wide range of investigations addressing the missions of the NIH and NSF. The Zebrafish Atlas provides reference slides for virtual microscopic viewing of the zebrafish using an Internet browser. Virtual slide technology allows the user to choose their own field of view and magnification, and to consult labeled histological sections of zebrafish. We are planning to include a complete set of embryos, larvae, juveniles, and adults from approximately 25 different ages. Future work will also include a variety of comparisons (e.g. normal vs. mutant, normal vs. diseased, multiple stages of development, zebrafish with other organisms, and different types of cancer).

Proper citation: Zebrafish Atlas (RRID:SCR_006722) Copy   


http://www.bic.mni.mcgill.ca/ServicesAtlases/Cyno

A reference atlas of cynomolgus macaque monkey magnetic resonance images. The template brain volume that offers a common stereotaxic reference frame to localize anatomical and functional information in an organized and reliable way for comparison across individual cynomolgus monkeys and studies. We have used MRI volumes from a group of 18 normal adult cynomulgus monkeys (Macaca fascicularis) to create the individual atlas. Thus, the atlas does not rely on the anatomy of a single subject, but instead depends on nonlinear normalization of numerous cynomolgus monkey brains mapped to an average template image that is faithful to the location of anatomical structures. Tools for registering a native MRI to the cynomolgus macaque atlas can be found in the Software section. Viewing the atlas and associated volumes online requires Java browser support. Additionally, you may download the atlas and associated files in your chosen format.

Proper citation: McConnell Brain Imaging Center MNI Cynomolgus Macaque Atlas (RRID:SCR_008793) Copy   


http://www.nitrc.org/projects/dti_rat_atlas/

3D DTI anatomical rat brain atlases have been created by the UNC- Chapel Hill Department of Psychiatry and the CAMID research collaboration. There are three age groups, postnatal day 5, postnatal day 14, and postnatal day 72. The subjects were Sprague-Dawley rats that were controls in a study on cocaine abuse and development. The P5 and P14 templates were made from scans of twenty rats each (ten female, ten male); the P72, from six females. The individual cases have been resampled to isotropic resolution, manually skull-stripped, and deformably registered via an unbiased atlas building method to create a template for each age group. Each template was then manually segmented using itk-SNAP software. Each atlas is made up of 3 files, a template image, a segmentation, and a label file.

Proper citation: 3D DTI Atlas of the Rat Brain In Postnatal Day 5 14 and Adulthood (RRID:SCR_009437) Copy   


  • RRID:SCR_006307

    This resource has 500+ mentions.

https://www.synapse.org/

A cloud-based collaborative platform which co-locates data, code, and computing resources for analyzing genome-scale data and seamlessly integrates these services allowing scientists to share and analyze data together. Synapse consists of a web portal integrated with the R/Bioconductor statistical package and will be integrated with additional tools. The web portal is organized around the concept of a Project which is an environment where you can interact, share data, and analysis methods with a specific group of users or broadly across open collaborations. Projects provide an organizational structure to interact with data, code and analyses, and to track data provenance. A project can be created by anyone with a Synapse account and can be shared among all Synapse users or restricted to a specific team. Public data projects include the Synapse Commons Repository (SCR) (syn150935) and the metaGenomics project (syn275039). The SCR provides access to raw data and phenotypic information for publicly available genomic data sets, such as GEO and TCGA. The metaGenomics project provides standardized preprocessed data and precomputed analysis of the public SCR data.

Proper citation: Synapse (RRID:SCR_006307) Copy   


http://www.som.soton.ac.uk/research/sites/cruk/translation/tumour.asp

Collects and distributes human tissue for ethically approved studies to aid the study of cancer biology and other associated research. All tissue is collected with patient consent and tissue is distributed only to ethically approved studies. The purpose of the Tissue Bank is to source, organize, collect, prepare, store and distribute a diverse collection of human tissues and biological products. This valuable core resource is available to all local academics and researchers. The on-site bank allows for rapid access to a plethora of biological materials supported by an informatics system of databases acting as an inventory management system. In addition, the Tissue Bank provides a licensed facility to store surplus tissue when studies close. Tissues currently available include normal and malignant snap frozen blocks, freshly prepared spleen and lymph nodes, fresh biopsy tissues, blood products and biological fluids. Collections can be organized by bank staff or ran in parallel with current research activities and include a wide variety of cancer classifications. We currently hold over 38,000 vials. Tissue Availability: Lymphoma - solid tissue and cells - 843; Breast - solid tissue and cells - 540; Colon - solid tissue and cells - 238; Lung - solid tissue and cells - 43; Upper Gi - BIOPSY tissue - 114; Pleural fluid and cells - 14

Proper citation: Southampton Tumour Bank (RRID:SCR_000673) Copy   


http://www.rrcancer.ca/en/publique/accueil

An infrastructure to allow Quebec researchers to have at their disposal tumor banks and the services that support large scale research in genomics and proteomics. The database and the tissue bank of the research network was created to allow rapid access to biological samples and their clinical data. It is spread out over many hospital institutions (in Montreal, Quebec and Sherbrooke). The members of the RRCancer-BTD supply normal, benign and malignant samples from routine surgeries and blood tests. Blood and tissue samples are collected by the provincial biobanks on a regular basis and are coded, classified and stored. The samples can be supplied to a researcher either fresh or frozen or blocks of paraffin or on slices. The sharing of information and biological material is managed according to ethical rules and contributes to increasing the value of research in Quebec. The network has mobilized a significant number of researchers in the area of cancer that unite their efforts to pursue high caliber multidisciplinary research. They are a group of researchers from many different Qu��bec Universities all working in the branch of cancer research. They are located in four hospital centers in Quebec, namely the University of Montreal Hospital Centre (CHUM), the University of Quebec Hospital Centre (CHUQ), the University of Sherbrooke Hospital Centre (CHUS) and the McGill University Hospital Centre (CUSM), as well as in the affiliated research and university centers (Sacr��-Coeur, Maisonneuve-Rosemont and the Montreal Jewish Hospital). The collaborative efforts created and maintained in this network have allowed transfer of knowledge and the sharing of cutting edge technologies. RRCancer favors multidisciplinary cancer research in both fundamental and clinical scopes. The network is based on the desire researchers to work together to prevent cancer and improve therapeutic strategies, all the while continuing the very important task of raining new specialists and graduate students.

Proper citation: Cancer Research Network of the FRSQ (RRID:SCR_004225) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X