Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://www.braintest.org/brain_test/BrainTest
A portal of online studies that encourage community participation to tackle the most challenging problems in neuropsychiatry, including attention-deficit / hyperactivity disorder, schizophrenia, and bipolar disorder. Our approach is to engage the community and try to recruit tens of thousands of people to spend an hour of their time on our site. You folks will provide data in both brain tests and questionnaires, as well as DNA, and in return, we will provide some information about your brain and behavior. You will also be entered to win amazon.com gift cards. While large collaborative efforts were made in genetics in order to discover the secrets of the human genome, there are still many mysteries about the behaviors that are seen in complex neuropsychiatric syndromes and the underlying biology that gives rise to these behaviors. We know that it will require studying tens of thousands of people to begin to answer these questions. Having you, the public, as a research partner is the only way to achieve that kind of investment. This site will try to reach that goal, by combining high-throughput behavioral assessment using questionnaires and game-like cognitive tests. You provide the data and then we will provide information and feedback about why you should help us achieve our goals and how it benefits everyone in the world. We believe that through this online study, we can better understand memory and attention behaviors in the general population and their genetic basis, which will in turn allow us to better characterize how these behaviors go awry in people who suffer from mental illness. In the end, we hope this will provide better, more personalized treatment options, and ultimately prevention of these widespread and extremely debilitating brain diseases. We will use the data we collect to try to identify the genetic basis for memory and impulse control, for example. If we can achieve this goal, maybe we can then do more targeted research to understand how the biology goes awry in people who have problems with cognition, including memory and impulse control, like those diagnosed with ADHD, Schizophrenia, Bipolar Disorder, and Autism Spectrum Disorders. By participating in our research, you can learn about mental illness and health and help researchers tackle these complex problems. We can''t do it without your help.
Proper citation: Brain Test (RRID:SCR_006212) Copy
Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.
Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy
Two University College London (UCL) biobanks, one based at the Royal Free Hospital (RFH) Campus and the other based at Bloomsbury supporting Pathology and the Cancer Institute, will act as physical repositories for collections of biological samples and data from patients consented at UCLH, Partners Hospitals and external sources. This will incorporate collections of existing stored samples and new collections. UCL-RFH BioBank, the physical repository at the Royal Free, presents a unique opportunity to advance medical research through making access to research tissue easier, faster and much more efficient. The BioBank is both a physical repository, with capacity for up to 1 million cryogenically stored samples and a virtual repository for all tissue, cell, plasma, serum, DNA and RNA samples stored throughout UCLP. In particular, samples considered "relevant material", such as tissues and cells, that are licensed by the Human Tissue Authority, can be stored long term. Existing holdings of tissues and cells where appropriate can be transferred to the Physical BioBank at the Royal Free. UCL - Royal Free BioBank provides a flexible approach to banking, allowing the Depositor to pick and choose services that are tailored to fit their requirements. Collaborations arising from publicizing of the existence of the holdings are entirely at the discretion of the depositor, as the facility ensures that access to the deposits remains at the decision of the Depositor/User. UCL Biobank for studying Health and Disease (based at Pathology-Rockefeller building and the UCL-Cancer Institute will support projects principally involved in the study of human disease. The aim is to support primarily, research in the Pathology Department, UCLH and the UCL-Cancer Institute but it will also support other UCLH partners. The biobank will store normal and pathological specimens, surplus to diagnostic requirements, from relevant tissues and bodily fluids. Stored tissues will include; snap-frozen or cryopreserved tissue, formalin-fixed tissue, paraffin-embedded tissues, and slides prepared for histological examination. Tissues will include resection specimens obtained surgically or by needle core biopsy. Bodily fluids will include; whole blood, serum, plasma, urine, cerebrospinal fluid, milk, saliva and buccal smears and cytological specimens such as sputum and cervical smears. Fine needle aspirates obtained from tissues and bodily cavities (e.g. pleura and peritoneum) will also be collected. Where appropriate the biobank will also store separated cells, protein, DNA and RNA isolated from collected tissues and bodily fluids described above. Some of the tissue and aspirated samples will be stored in the diagnostic archive.
Proper citation: UCL Biobank (RRID:SCR_000517) Copy
Project exploring the spectrum of genomic changes involved in more than 20 types of human cancer that provides a platform for researchers to search, download, and analyze data sets generated. As a pilot project it confirmed that an atlas of changes could be created for specific cancer types. It also showed that a national network of research and technology teams working on distinct but related projects could pool the results of their efforts, create an economy of scale and develop an infrastructure for making the data publicly accessible. Its success committed resources to collect and characterize more than 20 additional tumor types. Components of the TCGA Research Network: * Biospecimen Core Resource (BCR); Tissue samples are carefully cataloged, processed, checked for quality and stored, complete with important medical information about the patient. * Genome Characterization Centers (GCCs); Several technologies will be used to analyze genomic changes involved in cancer. The genomic changes that are identified will be further studied by the Genome Sequencing Centers. * Genome Sequencing Centers (GSCs); High-throughput Genome Sequencing Centers will identify the changes in DNA sequences that are associated with specific types of cancer. * Proteome Characterization Centers (PCCs); The centers, a component of NCI's Clinical Proteomic Tumor Analysis Consortium, will ascertain and analyze the total proteomic content of a subset of TCGA samples. * Data Coordinating Center (DCC); The information that is generated by TCGA will be centrally managed at the DCC and entered into the TCGA Data Portal and Cancer Genomics Hub as it becomes available. Centralization of data facilitates data transfer between the network and the research community, and makes data analysis more efficient. The DCC manages the TCGA Data Portal. * Cancer Genomics Hub (CGHub); Lower level sequence data will be deposited into a secure repository. This database stores cancer genome sequences and alignments. * Genome Data Analysis Centers (GDACs) - Immense amounts of data from array and second-generation sequencing technologies must be integrated across thousands of samples. These centers will provide novel informatics tools to the entire research community to facilitate broader use of TCGA data. TCGA is actively developing a network of collaborators who are able to provide samples that are collected retrospectively (tissues that had already been collected and stored) or prospectively (tissues that will be collected in the future).
Proper citation: The Cancer Genome Atlas (RRID:SCR_003193) Copy
https://www.davincieuropeanbiobank.org/
BioBank that collects, stores, processes and distributes biospecimens and the associated data. The biospecimens are human and non-human genetic materials, proteins, cells, tissues and biofluids. The data are the biological information associated to the samples and, in the case of human samples, the clinical information pertaining to the donor. The da Vinci European BioBank (daVEB) is a multicenter biobank with a centralized IT infrastructure and a main repository located at the Polo Scientifico (Scientific Campus of the University of Florence) in Sesto Fiorentino (Florence, Italy). Hosted by the Magnetic Resonance Center (CERM), an expert center on protein structure and metabolomics, daVEB's aim is to host as rich as possible biological human sample collections, stored accordingly to EU guidelines, in order to offer a powerful tool in the study of complex diseases. At the end of July 2011, the da Vinci European BioBank of the Pharmacogenomics FiorGen Onlus Foundation has been audited and got the quality certification according to UNI EN ISO 9001:2008 for Collection, storage and distribution of biological samples and the associated data for scientific research. Besides the samples stored at da Vinci European BioBank in Sesto Fiorentino (Florence), the daVEB is also the administrative biobank for research sample collections that are stored in the delocalized repositories. All the sample collections must be registered in the biobank: * sample collections taken within the regular health care * samples taken from healthy individuals or other persons out of the regular health care * samples that have been taken in hospitals within research protocols on specific pathologies all transferred to daVEB endowed with a transfer agreement signed by the donor. The Research Units actually afferent to daVEB are delocalized in the Florence, Prato, Pisa and Siena provinces. Delocalized repositories are under construction in Tuscany.
Proper citation: da Vinci European Biobank (RRID:SCR_004908) Copy
Collection of human embryonic and fetal material (Tissue and RNA) ranging from 3 to 20 weeks of development available to the international scientific community. Material can either be sent to registered users or our In House Gene Expression Service (IHGES) can carry out projects on user''''s behalf, providing high quality images and interpretation of gene expression patterns. Gene expression data emerging from HDBR material is added to our gene expression database which is accessible via our HUDSEN (Human Developmental Studies Network) website. A significant proportion of the material has been cytogenetically karyotyped, and normal karyotyped material is provided for research.
Proper citation: Human Developmental Biology Resource (RRID:SCR_006326) Copy
http://ki.se/en/imm/sheep-the-stockholm-heart-epidemiology-program
DNA from a population-based case-control study designed to investigate causes of myocardial infarction. The study population comprised all Swedish citizens living in the county of Stockholm who were 45 to 70 years of age and free of previously clinically diagnosed MI. Sample types: * DNA Number of sample donors: 2831 (sample collection completed)
Proper citation: SHEEP - Stockholm Heart Epidemiology Program (RRID:SCR_008905) Copy
http://www.framinghamheartstudy.org/
A longitudinal, epidemiologic study to identify the common risk factors or characteristics that contribute to cardiovascular disease by following its development over a long period of time in a large group of participants who had not yet developed overt symptoms or suffered a heart attack or stroke. Since that time the FHS has studied three generations of participants resulting in biological specimens and data from nearly 15,000 participants. Since 1994, two groups from minority populations, including related individuals have been added to the FHS. FHS welcomes proposals from outside investigators for data and biospecimens. The researchers recruited 5,209 men and women between the ages of 30 and 62 from the town of Framingham, Massachusetts, and began the first round of extensive physical examinations and lifestyle interviews that they would later analyze for common patterns related to CVD development. Since 1948, the subjects have continued to return to the study every two years for a detailed medical history, physical examination, and laboratory tests, and in 1971, the Study enrolled a second generation - 5,124 of the original participants'''' adult children and their spouses - to participate in similar examinations. In 1994, the need to establish a new study reflecting a more diverse community of Framingham was recognized, and the first Omni cohort of the Framingham Heart Study was enrolled. In April 2002 the Study entered a new phase, the enrollment of a third generation of participants, the grandchildren of the Original Cohort. In 2003, a second group of Omni participants was enrolled. Over the years, careful monitoring of the Framingham Study population has led to the identification of major CVD risk factors, as well as valuable information on the effects of these factors such as blood pressure, blood triglyceride and cholesterol levels, age, gender, and psychosocial issues. Risk factors for other physiological conditions such as dementia have been and continue to be investigated. In addition, the relationships between physical traits and genetic patterns are being studied. FHS clinical and research data is stored in the dbGaP and NHLBI Repository repositories and may be accessed by application. Please check the following repositories before applying for data through FHS. Investigators seeking data that is not available through dbGaP or BioLINCC or seeking biological specimens may submit a proposal through the FHS web-based research application. The FHS data repository may be accessed through this FHS website, under the For Researchers link, then Description of Data, in order to determine if and how the desired data is stored. Proposals may involve the use of existing data, the collection of new data, either directly from participants or from previously collected samples, images, or other materials (e.g., medical records). The FHS Repository also has biological specimens available for genetic and non-genetic research proposals. Specimens include urine, blood and blood products, as well as DNA.
Proper citation: Framingham Heart Study (RRID:SCR_008963) Copy
http://www.chernobyltissuebank.com/
The CTB (Chernobyl Tissue Bank) is an international cooperation that collects, stores and disseminates biological samples from tumors and normal tissues from patients for whom the aetiology of their disease is known - exposure to radioiodine in childhood following the accident at the Chernobyl power plant. The main objective of this project is to provide a research resource for both ongoing and future studies of the health consequences of the Chernobyl accident. It seeks to maximize the amount of information obtained from small pieces of tumor by providing multiple aliquots of RNA and DNA extracted from well documented pathological specimens to a number of researchers world-wide and to conserve this valuable material for future generations of scientists. It exists to promote collaborative, rather than competitive, research on a limited biological resource. Tissue is collected to an approved standard operating procedure (SOP) and is snap frozen; the presence or absence of tumor is verified by frozen section. A representative paraffin block is also obtained for each case. Where appropriate, we also collect fresh and paraffin-embedded tissue from loco-regional metastases. Currently we do not issue tissue but provide extracted nucleic acid, paraffin sections and sections from tissue microarrays from this material. The project is coordinated from Imperial College, London and works with Institutes in the Russian Federation (the Medical Radiological Research Centre in Obninsk) and Ukraine (the Institute of Endocrinology and Metabolism in Kiev) to support local scientists and clinicians to manage and run a tissue bank for those patients who have developed thyroid tumors following exposure to radiation from the Chernobyl accident. Belarus was also initially included in the project, but is currently suspended for political reasons.
Proper citation: Chernobyl Tissue Bank (RRID:SCR_010662) Copy
Atlas containing 2- and 3-dimensional, anatomical reference slides of the lifespan of the zebrafish to support research and education worldwide. Hematoxylin and eosin histological slides, at various points in the lifespan of the zebrafish, have been scanned at 40x resolution and are available through a virtual slide viewer. 3D models of the organs are reconstructed from plastic tissue sections of embryo and larvae. The size of the zebrafish, which allows sections to fall conveniently within the dimensions of the common 1 x 3 glass slide, makes it possible for this anatomical atlas to become as high resolution as for any vertebrate. That resolution, together with the integration of histology and organ anatomy, will create unique opportunities for comparisons with both smaller and larger model systems that each have their own strengths in research and educational value. The atlas team is working to allow the site to function as a scaffold for collaborative research and educational activity across disciplines and model organisms. The Zebrafish Atlas was created to answer a community call for a comprehensive, web-based, anatomical and pathological atlas of the zebrafish, which has become one of the most widely used vertebrate animal models globally. The experimental strengths of zebrafish as a model system have made it useful for a wide range of investigations addressing the missions of the NIH and NSF. The Zebrafish Atlas provides reference slides for virtual microscopic viewing of the zebrafish using an Internet browser. Virtual slide technology allows the user to choose their own field of view and magnification, and to consult labeled histological sections of zebrafish. We are planning to include a complete set of embryos, larvae, juveniles, and adults from approximately 25 different ages. Future work will also include a variety of comparisons (e.g. normal vs. mutant, normal vs. diseased, multiple stages of development, zebrafish with other organisms, and different types of cancer).
Proper citation: Zebrafish Atlas (RRID:SCR_006722) Copy
http://www.bic.mni.mcgill.ca/ServicesAtlases/Cyno
A reference atlas of cynomolgus macaque monkey magnetic resonance images. The template brain volume that offers a common stereotaxic reference frame to localize anatomical and functional information in an organized and reliable way for comparison across individual cynomolgus monkeys and studies. We have used MRI volumes from a group of 18 normal adult cynomulgus monkeys (Macaca fascicularis) to create the individual atlas. Thus, the atlas does not rely on the anatomy of a single subject, but instead depends on nonlinear normalization of numerous cynomolgus monkey brains mapped to an average template image that is faithful to the location of anatomical structures. Tools for registering a native MRI to the cynomolgus macaque atlas can be found in the Software section. Viewing the atlas and associated volumes online requires Java browser support. Additionally, you may download the atlas and associated files in your chosen format.
Proper citation: McConnell Brain Imaging Center MNI Cynomolgus Macaque Atlas (RRID:SCR_008793) Copy
http://www.nitrc.org/projects/dti_rat_atlas/
3D DTI anatomical rat brain atlases have been created by the UNC- Chapel Hill Department of Psychiatry and the CAMID research collaboration. There are three age groups, postnatal day 5, postnatal day 14, and postnatal day 72. The subjects were Sprague-Dawley rats that were controls in a study on cocaine abuse and development. The P5 and P14 templates were made from scans of twenty rats each (ten female, ten male); the P72, from six females. The individual cases have been resampled to isotropic resolution, manually skull-stripped, and deformably registered via an unbiased atlas building method to create a template for each age group. Each template was then manually segmented using itk-SNAP software. Each atlas is made up of 3 files, a template image, a segmentation, and a label file.
Proper citation: 3D DTI Atlas of the Rat Brain In Postnatal Day 5 14 and Adulthood (RRID:SCR_009437) Copy
A cloud-based collaborative platform which co-locates data, code, and computing resources for analyzing genome-scale data and seamlessly integrates these services allowing scientists to share and analyze data together. Synapse consists of a web portal integrated with the R/Bioconductor statistical package and will be integrated with additional tools. The web portal is organized around the concept of a Project which is an environment where you can interact, share data, and analysis methods with a specific group of users or broadly across open collaborations. Projects provide an organizational structure to interact with data, code and analyses, and to track data provenance. A project can be created by anyone with a Synapse account and can be shared among all Synapse users or restricted to a specific team. Public data projects include the Synapse Commons Repository (SCR) (syn150935) and the metaGenomics project (syn275039). The SCR provides access to raw data and phenotypic information for publicly available genomic data sets, such as GEO and TCGA. The metaGenomics project provides standardized preprocessed data and precomputed analysis of the public SCR data.
Proper citation: Synapse (RRID:SCR_006307) Copy
http://purl.bioontology.org/ontology/MCCL
A comprehensive ontology on primary and established cell lines-both normal and pathologic. It covers around 400 cell lines. This ontology has been built to include the major domains in the field of biology like anatomy, bio-molecules, chemicals and drugs, pathological conditions and genetic variations around the cell lines. An extensive network of relations has been built across these concepts to enable different combinations of queries. The ontology covers all cell lines from major sources like ATCC, DSMZ, ECACC, ICLC etc. and is built in OWL format.
Proper citation: Cell Line Ontology by Mahadevan (RRID:SCR_010281) Copy
http://caprica.genetics.kcl.ac.uk/BRAINEAC/
Database for the UK Brain Expression Consortium (UKBEC) dataset that comprises of brains from individuals free of neurodegenerative disorders. The aim of Braineac is to release to the scientific community a valid instrument to investigate the genes and SNPs associated with neurological disorders.
Proper citation: Braineac (RRID:SCR_015888) Copy
http://www.nitrc.org/projects/vervet_atlas/
Vervet (Chlorocebus aethiops sabaeus) probabilistic atlas that defines an anatomical space (template) with associated tissue and regional prior probability maps. The atlas was produced from whole head MRI of 10 normal adult animal subjects. The package consists of two atlases. The Biased directory contains the average template and probabilistic atlases for selected tissue classes constructed by registering the training population to one subject. The Unbiased directory contains the atlas constructed using unbiased estimation. The atlas is suitable for use in any segmentation tool using a probabilistic atlas, for example those in Slicer.
Proper citation: Vervet Probabilistic Atlas (RRID:SCR_000426) Copy
http://mouseatlas.caltech.edu/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on October, 01, 2019.
3D digital atlas of normal mouse development constructed from magnetic resonance image data. The download is a zipped file containing the six atlases Theiler Stages (ts) 13, 21,23, 24, 25 and 26 and MRI data for an unlabeled ts19 embryo. To view the atlases, download and install MBAT from: http://mbat.loni.ucla.edu Specimens were prepared in aqueous, isotonic solutions to avoid tissue shrinkage. Limited specimen handling minimized physical perturbation of the embryos to ensure accurate geometric representations of developing mouse anatomy. Currently, the atlas contains orthogonal sections through MRI volumes, three stages of embryos that have annotated anatomy, photographs of several stages of development, lineage trees for annotated embryos and a gallery of images and movies derived from the annotations. Anatomical annotations can be viewed by selecting a transverse section and selecting a pixel on the displayed slice.
Proper citation: 3D MRI Atlas of Mouse Development (RRID:SCR_008090) Copy
A curated knowledge base of the circuitry of the hippocampus of normal adult, or adolescent, rodents at the mesoscopic level of neuronal types. Knowledge concerning dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex is distilled from published evidence and is continuously updated as new information becomes available. Each reported neuronal property is documented with a pointer to, and excerpt from, relevant published evidence, such as citation quotes or illustrations. Please note: This is an alpha-testing site. The content is still being vetted for accuracy and has not yet undergone peer-review. As such, it may contain inaccuracies and should not (yet) be trusted as a scholarly resource. The content does not yet appear uniformly across all combinations of browsers and screen resolutions.
Proper citation: Hippocampome.org (RRID:SCR_009023) Copy
http://www.som.soton.ac.uk/research/sites/cruk/translation/tumour.asp
Collects and distributes human tissue for ethically approved studies to aid the study of cancer biology and other associated research. All tissue is collected with patient consent and tissue is distributed only to ethically approved studies. The purpose of the Tissue Bank is to source, organize, collect, prepare, store and distribute a diverse collection of human tissues and biological products. This valuable core resource is available to all local academics and researchers. The on-site bank allows for rapid access to a plethora of biological materials supported by an informatics system of databases acting as an inventory management system. In addition, the Tissue Bank provides a licensed facility to store surplus tissue when studies close. Tissues currently available include normal and malignant snap frozen blocks, freshly prepared spleen and lymph nodes, fresh biopsy tissues, blood products and biological fluids. Collections can be organized by bank staff or ran in parallel with current research activities and include a wide variety of cancer classifications. We currently hold over 38,000 vials. Tissue Availability: Lymphoma - solid tissue and cells - 843; Breast - solid tissue and cells - 540; Colon - solid tissue and cells - 238; Lung - solid tissue and cells - 43; Upper Gi - BIOPSY tissue - 114; Pleural fluid and cells - 14
Proper citation: Southampton Tumour Bank (RRID:SCR_000673) Copy
http://bodymap.genes.nig.ac.jp/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A taxonomical and anatomical database of latest cross species animal EST data, clustered by UniGene and inter connected by Inparanoid. Users can search by Unigene, RefSeq, or Entrez Gene ID, or search for Gene Name or Tissue type. Data is also sortable and viewable based on qualities of normal, Neoplastic, or other. The last data import appears to be from 2008
Proper citation: BodyMap-Xs (RRID:SCR_001147) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.