Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 568 results
Snippet view Table view Download 568 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_008243

    This resource has 10+ mentions.

http://www.grt.kyushu-u.ac.jp/spad/

It is divided to four categories based on extracellular signal molecules (Growth factor, Cytokine, and Hormone) and stress, that initiate the intracellular signaling pathway. SPAD is compiled in order to describe information on interaction between protein and protein, protein and DNA as well as information on sequences of DNA and proteins. There are multiple signal transduction pathways: cascade of information from plasma membrane to nucleus in response to an extracellular stimulus in living organisms. Extracellular signal molecule binds specific intracellular receptor, and initiates the signaling pathway. Now, there is a large amount of information about the signaling pathway which controls the gene expression and cellular proliferation. We have developed an integrated database SPAD to understand the overview of signaling transduction.

Proper citation: Signaling Pathway Database (RRID:SCR_008243) Copy   


http://pbil.univ-lyon1.fr/databases/homolens.php

Database of homologous genes from Ensembl organisms, structured under ACNUC sequence database management system. It allows to select sets of homologous genes among species, and to visualize multiple alignments and phylogenetic trees. It is possible to search for orthologous genes in a wide range of taxons. HOMOLENS is particularly useful for comparative sequence analysis, phylogeny and molecular evolution studies. More generally, HOMOLENS gives an overall view of what is known about a peculiar gene family. Note that HOMOLENS is split into two databases on this server: HOMOLENS contains the protein sequences while HOMOLENSDNA contains the nucleotide sequences. Protein sequences of HOMOLENS have been generated by translating the CDS of HOMOLENSDNA and using associated cross-references to generate the annotations.

Proper citation: Homologous Sequences in Ensembl Animal Genomes (RRID:SCR_008356) Copy   


  • RRID:SCR_008232

    This resource has 1+ mentions.

http://www.primervfx.com/#welcome

PrimerParadise is an online PCR primer database for genomics studies. The database contains predesigned PCR primers for amplification of exons, genes and SNPs of almost all sequenced genomes. Primers can be used for genome-wide projects (resequencing, mutation analysis, SNP detection etc). The primers for eukaryotic genomes have been tested with e-PCR to make sure that no alternative products will be generated. Also, all eukaryotic primers have been filtered to exclude primers that bind excessively throughout the genome. Genes are amplified as amplicons. Amplicons are defined as only one genes exons containing maximaly 3000 bp long dna segments. If gene is longer than 3000 bp then it is split into the segments at length 3000 bp. So for example gene at length 5000 bp is split into two segment and for both segments there were designed a separate primerpair. If genes exons length is over 3000 bp then it is split into amplicons as well. Every SNP has one primerpair. In addition of considering repetitive sequences and mono-dinucleotide repeats, we avoid designing primers to genome regions which contain other SNPs. -There are two ways to search for primers: you can use features IDs ( for SNP primers Reference ID, for gene/exon primers different IDs (Ensembl gene IDs, HUGO IDs for human genes, LocusLink IDs, RefSeq IDs, MIM IDs, NCBI gene names, SWISSPROT IDs for bacterial genes, VEGA gene IDs for human and mouse, Sanger S.pombe systematic gene names and common gene names, S.cerevisiae GeneBanks Locus, AccNo, GI IDs and common gene names) -you can use genome regions (chromosome coordinates, chromosome bands if exists) -Currently we provide 3 primers collections: proPCR for prokaryotic organisms genes primers -euPCR for eukaryotic organisms genes/exons primers -snpPCR for eukaryotic organisms SNP primers Sponsors: PrimerStudio is funded by the University of Tartu.

Proper citation: PrimerStudio (RRID:SCR_008232) Copy   


  • RRID:SCR_008147

    This resource has 1+ mentions.

http://www.thearkdb.org/arkdb/

This website contains the mapping sequence of poultry. The ArkDB database system aims to provide a comprehensive public repository for genome mapping data from farmed and other animal species. In doing so, it aims to provide a route in to genomic and other sequence from the initial viewpoint of linkage mapping, RH mapping, physical mapping or - possibly more importantly - QTL mapping data. It's supported, in part, by the USDA-CSREES National Animal Genome Research Program in order to serve the poultry genome mapping community. This system represents a complete rewrite of the original version with the code migrated to java and the underlying database targeted at postgres (although any standards-compliant database engine should suffice). The initial release records details of maps and the markers that they contain. There are alternative entry points that target either a chromosome or a specific mapping analysis as the starting point. Limited relationships between markers are recorded and displayed. As with the previous version, all maps are drawn using data extracted from the database on the fly.

Proper citation: ChickBase (RRID:SCR_008147) Copy   


http://alizadehlab.stanford.edu/

This is an open-source Mouse Exonic Evidence-Based Oligonucleotide Chip (MEEBOChip), and are in the process of building the human counterpart, HEEBOChip. The set of 70mers for MEEBOChip is already available from Illumina, Inc., with synthesis of HEEBOChip 70mers in progress. Both arrays are based on a novel selection of exonic long-oligonucleotides (70-mers) from a genomic annotation of the corresponding complete genome sequences, using a transcriptome-based annotation of exon structure for each genomic locus. Using a combination of existing and custom-tailored tools and datasets (including millions of mRNA and EST sequences), we built and performed a systematic examination of transcript-supported exon structure for each genomic locus at the base-pair level (i.e., exonic evidence). This strategy allowed them to select both constitutive and in many cases alternative exons for nearly every gene in the corresponding genome (e.g., protocadherin locus), allowing an unprecedented exploration of human and mouse biology. Furthermore, they used experimentally derived data to hone the selection of these 70mers, helping maximize their performance under typical fluorescent labeling and hybridization conditions. Specifically, they applied and refined the ArrayOligoSelector algorithm from Joe DeRisis laboratory to select 70mers, considering not only their uniqueness (i.e., hybridization specificity) within the content of the entire genome, but also to overcome the known biases of labeling and hybridization methods (e.g., 3-biased reverse transcription and in vitro transcription reactions).

Proper citation: Alizadehlab: MeeboChip and HeeboChip Open Source Project (RRID:SCR_008384) Copy   


http://locustdb.genomics.org.cn/

The migratory locust (Locusta migratoria) is an orthopteran pest and a representative member of hemimetabolous insects. Its transcriptomic data provide invaluable information for molecular entomology study of the insect and pave a way for comparative studies of other medically, agronomically, and ecologically relevant insects. This first transcriptomic database of the locust (LocustDB) has been developed, building necessary infrastructures to integrate, organize, and retrieve data that are either currently available or to be acquired in the future. It currently hosts 45,474 high quality EST sequences from the locust, which were assembled into 12,161 unigenes. This database contains original sequence data, including homologous/orthologous sequences, functional annotations, pathway analysis, and codon usage, based on conserved orthologous groups (COG), gene ontology (GO), protein domain (InterPro), and functional pathways (KEGG). It also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. LocustDB also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. It starts with the first transcriptome information for an orthopteran and hemimetabolous insect and will be extended to provide a framework for incorporation of in-coming genomic data of relevant insect groups and a workbench for cross-species comparative studies.

Proper citation: Migratory Locust EST Database (RRID:SCR_008201) Copy   


http://www.sanger.ac.uk/Projects/C_elegans/index.shtml

The Sanger Institute and the Genome Sequencing Center at the Washington University School of Medicine, St. Louis have collaborated to sequence the genomes of both C. elegans and C. briggsae. The completed C. elegans genome sequence is represented by over 3,000 individual clone sequences which can be accessed through this site (or through WormBase). These sequences are submitted to EMBL whenever the sequence or annotation changes (e.g. modification to gene structures) and these submissions are then mirrored to GenBank and DDBJ. These sequences (along with ESTs and proteins) can be searched on our C. elegans BLAST server. WormBase is the repository of mapping, sequencing and phenotypic information for C. elegans. The worm informatics group at the Sanger Institute play a key role in assembling the whole database. They also curate and develop some of the constituent databases that comprise WormBase.

Proper citation: Caenorhabditis Genome Sequencing Projects (RRID:SCR_008155) Copy   


http://www.ebi.ac.uk/asd/aedb/index.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 27, 2013. A manual generated database for alternative exons and their properties from numerous species - the data is gathered from literature where these exons have been experimentally verified. Most alternative exons are cassette exons and are expressed in more than two tissues. Of all exons whose expression was reported to be specific for a certain tissue, the majority were expressed in the brain. At the moment, AEdb products that are available are sequence (a database of alternative exons), function (a database of functions attributed to constitutive and alternative exon), regulatory sequence (a database of transcript regulatory motifs), minigenes (a table of minigenes and their associations to splicing events), and diseases (a table of diseases associated with splicing and their associations to AltSplice). Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. The continuation and upgrade of the ASD consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database of computationally delineated alternative splicing events. Its data include alternatively spliced introns/exons, events, isoform splicing patterns and isoform peptide sequences. AltSplice data are generated by examining gene-transcript alignments. The data are annotated for various biological features including splicing signals, expression states, (SNP)-mediated splicing and cross-species conservation. AEdb forms the manually curated component of ASD. It is a literature-based data set containing sequence and properties of alternatively spliced exons, functional enumeration of observed splicing events, characterization of observed splicing regulatory elements, and a collection of experimentally clarified minigene constructs.

Proper citation: Alternative Exon Database (RRID:SCR_008157) Copy   


http://mips.gsf.de/services/genomes/uwe25/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. This is the official database of the environmental chlamydia genome project. This resource provides access to finished sequence for Parachlamydia-related symbiont UWE25 and to a wide range of manual annotations, automatical analyses and derived datasets. Functional classification and description has been manually annotated according to the Annotation guidelines. Chlamydiae are the major cause of preventable blindness and sexually transmitted disease. Genome analysis of a chlamydia-related symbiont of free-living amoebae revealed that it is twice as large as any of the pathogenic chlamydiae and had few signs of recent lateral gene acquisition. We showed that about 700 million years ago the last common ancestor of pathogenic and symbiotic chlamydiae was already adapted to intracellular survival in early eukaryotes and contained many virulence factors found in modern pathogenic chlamydiae, including a type III secretion system. Ancient chlamydiae appear to be the originators of mechanisms for the exploitation of eukaryotic cells. Environmental chlamydiae have recently been recognized as obligate endosymbionts of free-living amoebae and have been implicated as potential human pathogens. Environmental chlamydiae form a deep branching evolutionary lineage within the medically important order Chlamydiales. Despite their high diversity and ubiquitous distribution in clinical and environmental samples only limited information about genetics and ecology of these microorganisms is available. The Parachlamydia-related Acanthamoeba symbiont UWE25 was therefore selected as representative environmental chlamydia strain for whole genome sequencing. Comparative genome analysis was performed using PEDANT and simap. Sponsors: The environmental chlamydia genome project was funded by the bmb+f (German Federal Ministry of Education and Research) and is part of the Competence Network PathoGenoMiK.

Proper citation: Protochlamydia amoebophila UWE25 (RRID:SCR_008222) Copy   


http://www.bioinf.mdc-berlin.de/splice/db/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. An online available compendium of alternative splice forms for several organisms (Arabidopsis thaliana, Bos taurus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Homo sapiens, Mus musculus, Rattus norvegicus, Xenopus laevis). Alternative splice forms are defined by comparing high-scoring ESTs to mRNA sequences (both from GenBank) with known exon-intron information (from ENSEMBL database) using BLAST. Repetitive sequences of all mRNAs have beforehand been masked by MaskerAid. Filtering programs with defined parameters compare the ends of each aligned sequence pair for deletions or insertions in the EST sequence, which suggest the existence of alternative splice forms. The database is accessible by typing in accession numbers (ACC) or keywords like description, gene names, organism or other keywords. (If more than one hit was found a list of all results is given.) And the result page is divided into 4 major parts. The first part (General Information About The Entry) summarizes the most important information as database ids, organism, and description. The so called alternative splice profile (ASP) of each human sequence is shown in the second part (Alternative Splice Frequency). The ASP indicates the number of alternatively spliced ESTs (NAE), the number of constitutively spliced ESTs (NCE) as well as the number of alternative splice sites (NSS) per mRNA. NAE and NCE corresponds to the EST coverage and can be used as a quality value for the predicted alternative splice variants. The NSS value specifies the splice propensity of a gene. Moreover the number of ESTs from cancerous tissues is shown. The histological source and the developmental stages are illustrated with several colors to enables the user to get an overview of the origins of the matching ESTs. Also, the Splice Site View shows graphically all alternative splice sites for the whole transcript.

Proper citation: Extended Alternatively Spliced EST Database (RRID:SCR_008186) Copy   


http://mpr.nci.nih.gov/MPR/BrowseProteins.aspx

THIS RESOURCE IS NO LONGER IN SERVICE, documented on 6/24/13. A repository of information on commercially available phospho-specific antibodies to human phosphorylation sites. It provides a BLAST search for phosphorylation sites using as query the amino acid sequence surrounding the site. It also provides direct links to the relevant antibodies from many companies including BD Pharmingen, Biosource International, Cell Signaling Technology (CST), Santa Cruz Biotechnologies, Upstate Biotechnology.

Proper citation: Mammalian Phosphorylation Resource (RRID:SCR_008210) Copy   


http://www.schematikon.org/Nh3D.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. It is freely available as a reference dataset for the statistical analysis of sequence and structure features of proteins in the PDB. It is a dataset of structurally dissimilar proteins. This dataset has been compiled by selecting well resolved representatives from the Topology level of the CATH database which hierarchically classifies all protein structures. These have been been pruned to remove: i) domains that may contain homologous elements (by pairwise sequence comparison and structural superposition of aligned residues) ii) internal duplications (by repeat detection) iii) regions with high B-Factor The statistical analysis of protein structures requires datasets in which structural features can be considered independently distributed, i.e. not related through common ancestry, and that fulfill minimal requirements regarding the experimental quality of the structures it contains. However, non-redundant datasets based on sequence similarity invariably contain distantly related homologues. Here a reference dataset of non-homologous protein domains is provided, assuming that structural dissimilarity at the topology level is incompatible with recognizable common ancestry. It contains the best refined representatives of each Topology level, validates structural dissimilarity and removes internally duplicated fragments. The compilation of Nh3D is fully scripted. The current Nh3D list contains 570 domains with a total of 90780 residues. It covers more than 70% of folds at the Topology level of the CATH database and represents more than 90% of the structures in the PDB that have been classified by CATH. Even though all protein pairs are structurally dissimilar, some pairwise sequence identities after global alignment are greater than 30%. Nh3D is freely available as a reference dataset for the statistical analysis of sequence and structure features of proteins in the PDB.

Proper citation: Nh3D: A Reference Dataset of Structures of Non-homologous Proteins (RRID:SCR_008212) Copy   


  • RRID:SCR_000400

    This resource has 1+ mentions.

http://www.ncbi.nlm.nih.gov/dbSTS/

THIS RESOURCE IS NO LONGER IN SERVICE, as of October 1, 2013; however, the site is still accessible. NCBI resource that contains sequence and mapping data on short genomic landmark sequences or Sequence Tagged Sites. STS sequences are incorporated into the STS Division of GenBank. The dbSTS database offers a route for submission of STS sequences to GenBank. It is designed especially for the submission of large batches of STS sequences.

Proper citation: dbSTS (RRID:SCR_000400) Copy   


  • RRID:SCR_000755

    This resource has 1+ mentions.

http://interolog.gersteinlab.org/

Interolog/Regulog quantitatively assess the degree to which interologs can be reliably transferred between species as a function of the sequence similarity of the corresponding interacting proteins.

Proper citation: Interolog/Regulog Database (RRID:SCR_000755) Copy   


  • RRID:SCR_001618

    This resource has 50+ mentions.

http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi

Database and browser that provides a central resource to archive and display association between genetic variation and high-throughput molecular-level phenotypes. This effort originated with the NIH GTEx roadmap project: however the scope of this resource will be extended to include any available genotype/molecular phenotype datasets.

Proper citation: GTEx eQTL Browser (RRID:SCR_001618) Copy   


  • RRID:SCR_001372

    This resource has 1+ mentions.

http://www.broadinstitute.org/annotation/genome/neurospora/Home.html

It's strategy involves Whole Genome Shotgun (WGS) sequencing, in which sequence from the entire genome is generated and reassembled. This method is standard for microbial genome sequencing, and has been successfully applied to Drosophila. Neurospora is an ideal candidate for this approach because of the low repeat content of the genome. Neurospora crassa Database has expanded the scope of its database by including a mitochondrial annotation, incorporating information from the Neurospora compendium, and assigning NCU numbers to tRNA and rRNAs. They have improved the annotation process to predict untranslated regions and to reduce the number of spurious predictions. As a result, version 3 contains 9,826 genes, 794 fewer than version 2. During the initial phase of a WGS project they sequence both ends of the 4 kb inserts from a plasmid library prepared using randomly sheared and sized-selected DNA. The shotgun reads are assembled by recognizing overlapping regions of sequence and making use of the knowledge of the orientation and distance of the paired reads from each plasmid. Obtaining deep sequence coverage though high levels of sequence redundancy assures that the majority of the genome is represented in the initial assembly and that the consensus sequence is of high quality. Their approach toward the initial assembly was conservative, meaning they would rather fail to join sequence contigs that might overlap each other than risk making false joins between two closely related but non-overlapping genomic regions. Hence, the initial assembly contains many sequence contigs and over time these contigs will increase in size and decrease in number as they are joined together. After shotgun sequencing and assembly there was a second phase of sequencing in which additional sequence was obtained from specific regions that were missing from the original assembly or are recognized to be of low quality in the consensus. The Neurospora crassa sequencing project reflects a close collaboration between the Broad Institute and the Neurospora research community. Principal investigators include Bruce Birren and Chad Nusbaum from the Broad Institute, Matt Sachs at the Oregon Graduate Institute of Science and Technology, Chuck Staben at the University of Kentucky and Jak Kinsey at the Fungal Genetics Stock Center at the University of Kansas Medical Center. In addition, we have a larger Advisory Board made up of a number of Neurospora researchers. Sponsors: They have been funded by the National Science Foundation to sequence the N. crassa genome and make the information publicly available.

Proper citation: Neurospora crassa Database (RRID:SCR_001372) Copy   


  • RRID:SCR_002380

    This resource has 10000+ mentions.

http://www.uniprot.org/

Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.

Proper citation: UniProt (RRID:SCR_002380) Copy   


http://www.ebi.ac.uk/swissprot/hpi/hpi.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 03, 2011. IT HAS BEEN REPLACED BY A NEW UniProtKB/Swiss-Prot ANNOTATION PROGRAM CALLED UniProt Chordata protein annotation program. The Human Proteome Initiative (HPI) aims to annotate all known human protein sequences, as well as their orthologous sequences in other mammals, according to the quality standards of UniProtKB/Swiss-Prot. In addition to accurate sequences, we strive to provide, for each protein, a wealth of information that includes the description of its function, domain structure, subcellular location, similarities to other proteins, etc. Although as complete as currently possible, the human protein set they provide is still imperfect, it will have to be reviewed and updated with future research results. They will also create entries for newly discovered human proteins, increase the number of splice variants, explore the full range of post-translational modifications (PTMs) and continue to build a comprehensive view of protein variation in the human population. The availability of the human genome sequence has enabled the exploration and exploitation of the human genome and proteome to begin. Research has now focused on the annotation of the genome and in particular of the proteome. With expert annotation extracted from the literature by biologists as the foundation, it has been possible to expand into the areas of data mining and automatic annotation. With further development and integration of pattern recognition methods and the application of alignments clustering, proteome analysis can now be provided in a meaningful way. These various approaches have been integrated to attach, extract and combine as much relevant information as possible to the proteome. This resource should be valuable to users from both research and industry. We maintain a file containing all human UniProtKB/Swiss-Prot entries. This file is updated at every biweekly release of UniProt and can be downloaded by FTP download, HTTP download or by using a mirroring program which automatically retrieves the file at regular intervals.

Proper citation: Human Proteomics Initiative (RRID:SCR_002373) Copy   


  • RRID:SCR_002277

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/ieb/research/acembly/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 29, 2016. AceView offers an integrated view of the human, nematode and Arabidopsis genes reconstructed by co-alignment of all publicly available mRNAs and ESTs on the genome sequence. Our goals are to offer a reliable up-to-date resource on the genes and their functions and to stimulate further validating experiments at the bench. AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals' transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated. Our goals are to offer an up-to-date resource on the genes, in the hope to stimulate further experiments at the bench, or to help medical research. AceView can be queried by meaningful words or groups of words as well as by most standard identifiers, such as gene names, Entrez Gene ID, UniGene ID, GenBank accessions.

Proper citation: AceView (RRID:SCR_002277) Copy   


  • RRID:SCR_002125

    This resource has 1+ mentions.

http://rulai.cshl.edu/LSPD/

LSPD provides liver specific gene. It lists ~300 promoter regions responsible for liver specific transcriptions, collect ~400 experimentally verified regulatory regions and elements, provide information on transcription regulation of liver genes, compare transcription regulation of functionally or evolutionarily related genes, and retrieve sequences of the promoter region. Its regulatory elements provides information on transcription regulatory elements, reports the methods for verification of the elements, records binding affinity and regulatory function, and summarizes the site distribution and sequence consensus.

Proper citation: LSPD (RRID:SCR_002125) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X