Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://github.com/lufuhao/ExonerateTransferAnnotation
Software tool as pipeline to make anntotations using cDNA and CDS sequences.
Proper citation: ExonerateTransferAnnotation (RRID:SCR_017557) Copy
http://www.cbs.dtu.dk/services/SignalP/
Web application for prediction of the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.
Proper citation: SignalP (RRID:SCR_015644) Copy
http://dynamine.ibsquare.be/submission/
An NMR based method for protein folding prediction. Users can enter a UniProt identifier, FASTA sequences, or upload a file containing FASTA sequences and results are returned.
Proper citation: DynaMine (RRID:SCR_014559) Copy
Software tool as catalog of inferred sequence binding preferences. Online library of transcription factors and their DNA binding motifs.
Proper citation: CIS-BP (RRID:SCR_017236) Copy
http://nucleobytes.com/index.php/4peaks
Software application for viewing and editing sequence trace files.
Proper citation: 4Peaks (RRID:SCR_000015) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
http://sourceforge.net/projects/skewer/
Software program for adapter trimming that is specially designed for processing Illumina paired-end sequences.
Proper citation: skewer (RRID:SCR_001151) Copy
A collection of high quality multiple sequence alignments for objective, comparative studies of alignment algorithms. The alignments are constructed based on 3D structure superposition and manually refined to ensure alignment of important functional residues. A number of subsets are defined covering many of the most important problems encountered when aligning real sets of proteins. It is specifically designed to serve as an evaluation resource to address all the problems encountered when aligning complete sequences. The first release provided sets of reference alignments dealing with the problems of high variability, unequal repartition and large N/C-terminal extensions and internal insertions. Version 2.0 of the database incorporates three new reference sets of alignments containing structural repeats, trans-membrane sequences and circular permutations to evaluate the accuracy of detection/prediction and alignment of these complex sequences.
Within the resource, users can look at a list of all the alignments, download the whole database by ftp, get the "c" program to compare a test alignment with the BAliBASE reference (The source code for the program is freely available), or look at the results of a comparison study of several multiple alignment programs, using BAliBASE reference sets.
Proper citation: BAliBASE (RRID:SCR_001940) Copy
http://www.ch.embnet.org/software/COILS_form.html
COILS is a program that compares a sequence to a database of known parallel two-stranded coiled-coils and derives a similarity score. By comparing this score to the distribution of scores in globular and coiled-coil proteins, the program then calculates the probability that the sequence will adopt a coiled-coil conformation.
Proper citation: COILS: Prediction of Coiled Coil Regions in Proteins (RRID:SCR_008440) Copy
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Software tool to automate quality and adapter trimming as well as quality control, with some added functionality to remove biased methylation positions for RRBS sequence files for directional, non-directional or paired-end sequencing. Wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming to FastQ files, with extra functionality for Reduced Representation Bisulfite Sequencing data.
Proper citation: Trim Galore (RRID:SCR_011847) Copy
Database of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus including information about genes and proteins of Aspergillus nidulans and Aspergillus fumigatus; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Sgenus species. Also available are Gene Ontology (GO) and community resources. Based on the Candida Genome Database, the Aspergillus Genome Database is a resource for genomic sequence data and gene and protein information for Aspergilli. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). Search options allow you to: *Search AspGD database using keywords. *Find chromosomal features that match specific properties or annotations. *Find AspGD web pages using keywords located on the page. *Find information on one gene from many databases. *Search for keywords related to a phenotype (e.g., conidiation), an allele (such as veA1), or an experimental condition (e.g., light). Analysis and Tools allow you to: *Find similarities between a sequence of interest and Aspergillus DNA or protein sequences. *Display and analyze an Aspergillus sequence (or other sequence) in many ways. *Navigate the chromosomes set. View nucleotide and protein sequence. *Find short DNA/protein sequence matches in Aspergillus. *Design sequencing and PCR primers for Aspergillus or other input sequences. *Display the restriction map for a Aspergillus or other input sequence. *Find similarities between a sequence of interest and fungal nucleotide or protein sequences. AspGD welcomes data submissions.
Proper citation: ASPGD (RRID:SCR_002047) Copy
http://www.ncbi.nlm.nih.gov/HTGS/
Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.
Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy
Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.
Proper citation: SAMTOOLS (RRID:SCR_002105) Copy
http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/mhc/Final Archive
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019 Database was open, publicly accessible platform for DNA and clinical data related to human Major Histocompatibility Complex (MHC). Data from IHWG workshops were provided as well.
Proper citation: dbMHC (RRID:SCR_002302) Copy
http://bioafrica.mrc.ac.za/index.html
The BioAfrica HIV-1 Proteomics Resource is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. HIV Proteomics Resource contains information about each HIV-1 gene product in regard to expression, post-transcriptional / post-translational modifications, localization, functional activities, and potential interactions with viral and host macromolecules. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites.
Proper citation: BioAfrica HIV Informatics in Africa (RRID:SCR_002295) Copy
Maintains and provides archival, retrieval and analytical resources for biological information. Central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: DDBJ Omics Archive and BioProject. DOR is archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides organizational framework to access metadata about research projects and data from projects that are deposited into different databases.
Proper citation: DNA DataBank of Japan (DDBJ) (RRID:SCR_002359) Copy
http://www.ncbi.nlm.nih.gov/genome
Database that organizes information on genomes including sequences, maps, chromosomes, assemblies, and annotations in six major organism groups: Archaea, Bacteria, Eukaryotes, Viruses, Viroids, and Plasmids. Genomes of over 1,200 organisms can be found in this database, representing both completely sequenced organisms and those for which sequencing is in progress. Users can browse by organism, and view genome maps and protein clusters. Links to other prokaryotic and archaeal genome projects, as well as BLAST tools and access to the rest of the NCBI online resources are available.
Proper citation: NCBI Genome (RRID:SCR_002474) Copy
http://sourceforge.net/projects/bio-rainbow/
Software developed to provide an ultra-fast and memory-efficient solution to clustering and assembling short reads produced by RAD-seq.
Proper citation: Rainbow (RRID:SCR_002724) Copy
https://github.com/ekg/fastahack
Software application for indexing and extracting sequences and subsequences from FASTA files. It will only generate indexes for FASTA files in which the sequences have self-consistent line lengths.
Proper citation: Fastahack (RRID:SCR_016090) Copy
https://github.com/BackofenLab/HVSeeker/tree/main
Software tool for distinguishing between bacterial and phage sequences. Consists of two separate models: one analyzing DNA sequences and the other focusing on proteins.
Proper citation: HVSeeker (RRID:SCR_026120) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.