Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.
Proper citation: Genomatix Software: Understanding Gene Regulation (RRID:SCR_008036) Copy
http://www.osc.riken.jp/english/
Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.
Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy
http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/intro2.pl?BASE=goat
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. This website contains information about the mapping of the caprine genome. It contains loci list, phenes list, cartography, gene list, and other sequence information about goats. This website contains 731 loci, 271 genes, and 1909 homologue loci on 112 species. It also allows users to summit their own data for Goatmap. ARK-Genomics is not-for-profit and has collaborators from all over the world with an interest in farm animal genomics and genetics. ARK-Genomics was initially set up in 2000 with a grant awarded from the BBSRC IGF (Investigating Gene Function) initiative and from core resources of the Roslin Institute to provide a laboratory for automated analysis of gene expression using state-of-the-art genomic facilities. Since then, ARK-Genomics has expanded considerably, building up considerable expertise and resources.
Proper citation: GoatMap Database (RRID:SCR_008144) Copy
http://www.sanger.ac.uk/Projects/Microbes/
This website includes a list of projects that the Sanger Institute is currently working on or completed. All projects consist of the genomic sequencing of different bacteria. Each description of the bacteria includes its classification, a description, and the types of diseases that the bacteria is likely to cause. The Sanger Institute bacterial sequencing effort is concentrated on pathogens and model organisms. Data is accessible in a number of ways; for each organism there is a BLAST server, allowing users to search the sequences with their own query and retrieve the matching contigs. Sequences can also be downloaded directly by FTP. Data is accessible in a number of ways; for each organism there is a BLAST server, allowing you to search the sequences with your own query and retrieve the matching contigs. Sequences can also be downloaded directly by FTP. The primary sequence viewer and annotation tool, Artemis is available for download. This is a portable Java program which is used extensively within the Microbial Genomes group for the analysis and annotation of sequence data from cosmids to whole genomes. The Artemis Comparison Tool (ACT) is also useful for interactive viewing of the comparisons between large and small sequences.
Proper citation: Bacterial Genomes (RRID:SCR_008141) Copy
http://genome.wustl.edu/projects/detail/human-gut-microbiome/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2022. Human Gut Microbiome Initiative (HGMI) seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota. Humans are supra-organisms, composed of 10 times more microbial cells than human cells. Therefore, it seems appropriate to consider ourselves as a composite of many species - human, bacterial, and archaeal - and our genome as an amalgamation of human genes and the genes in ''our'' microbial genomes (''microbiome''). In the same sense, our metabolome can be considered to be a synthesis of co-evolved human and microbial traits. The total number of genes present in the human microbiome likely exceeds the number of our H. sapiens genes by orders of magnitude. Thus, without an understanding of our microbiota and microbiome, it not possible to obtain a complete picture of our genetic diversity and of our normal physiology. Our intestine is home to our largest collections of microbes: bacterial densities in the colon (up to 1 trillion cells/ml of luminal contents) are the highest recorded for any known ecosystem. The vast majority of phylogenetic types in the distal gut microbiota belong to just two divisions (phyla) of the domain Bacteria - the Bacteroidetes and the Firmicutes. Members of eight other divisions have also been identified using culture-independent 16S rRNA gene-based surveys. Metagenomic studies of complex microbial communities residing in our various body habitats are limited by the availability of suitable reference genomes for confident assignment of short sequence reads generated by highly parallel DNA sequencers, and by knowledge of the professions (niches) of community members. Therefore, HGMI, which represents a collaboration between Washington University''s Genome Center and its Center for Genome Sciences, seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota.
Proper citation: Human Gut Microbiome Initiative (RRID:SCR_008137) Copy
https://www.ncbi.nlm.nih.gov/genbank/dbest/
Database as a division of GenBank that contains sequence data and other information on single-pass cDNA sequences, or Expressed Sequence Tags, from a number of organisms.
Proper citation: dbEST (RRID:SCR_008132) Copy
http://ncv.unl.edu/Angelettilab/HPV/Database.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.
Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy
The Distributed Annotation System (DAS) defines a communication protocol used to exchange annotations on genomic or protein sequences. It is motivated by the idea that such annotations should not be provided by single centralized databases, but should instead be spread over multiple sites. Data distribution, performed by DAS servers, is separated from visualization, which is done by DAS clients. The advantages of this system are that control over the data is retained by data providers, data is freed from the constraints of specific organisations and the normal issues of release cycles, API updates and data duplication are avoided. DAS is a client-server system in which a single client integrates information from multiple servers. It allows a single machine to gather up sequence annotation information from multiple distant web sites, collate the information, and display it to the user in a single view. Little coordination is needed among the various information providers. DAS is heavily used in the genome bioinformatics community. Over the last years we have also seen growing acceptance in the protein sequence and structure communities. A DAS-enabled website or application can aggregate complex and high-volume data from external providers in an efficient manner. For the biologist, this means the ability to plug in the latest data, possibly including a user''s own data. For the application developer, this means protection from data format changes and the ability to add new data with minimal development cost. Here are some examples of DAS-enabled applications or websites for end users: :- Dalliance Experimental Web/Javascript based Genome Viewer :- IGV Integrative Genome Viewer java based browser for many genomes :- Ensembl uses DAS to pull in genomic, gene and protein annotations. It also provides data via DAS. :- Gbrowse is a generic genome browser, and is both a consumer and provider of DAS. :- IGB is a desktop application for viewing genomic data. :- SPICE is an application for projecting protein annotations onto 3D structures. :- Dasty2 is a web-based viewer for protein annotations :- Jalview is a multiple alignment editor. :- PeppeR is a graphical viewer for 3D electron microscopy data. :- DASMI is an integration portal for protein interaction data. :- DASher is a Java-based viewer for protein annotations. :- EpiC presents structure-function summaries for antibody design. :- STRAP is a STRucture-based sequence Alignment Program. Hundreds of DAS servers are currently running worldwide, including those provided by the European Bioinformatics Institute, Ensembl, the Sanger Institute, UCSC, WormBase, FlyBase, TIGR, and UniProt. For a listing of all available DAS sources please visit the DasRegistry. Sponsors: The initial ideas for DAS were developed in conversations with LaDeana Hillier of the Washington University Genome Sequencing Center.
Proper citation: Distributed Annotation System (RRID:SCR_008427) Copy
http://bioinf.uni-greifswald.de/augustus/
Software for gene prediction in eukaryotic genomic sequences. Serves as a basis for further steps in the analysis of sequenced and assembled eukaryotic genomes.
Proper citation: Augustus (RRID:SCR_008417) Copy
http://salilab.org/modeller/modeller.html
Software tool as Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints. Used for homology or comparative modeling of protein three dimensional structures. User provides alignment of sequence to be modeled with known related structures and MODELLER automatically calculates model containing all non hydrogen atoms.
Proper citation: MODELLER (RRID:SCR_008395) Copy
PDBj (Protein Data Bank Japan) maintains a centralized PDB archive of macromolecular structures and provides integrated tools, in collaboration with the RCSB, the BMRB in USA and the PDBe in EU.
Proper citation: PDBj - Protein Data Bank Japan (RRID:SCR_008912) Copy
http://hymenopteragenome.org/beebase/
Gene sequences and genomes of Bombus terrestris, Bombus impatiens, Apis mellifera and three of its pathogens, that are discoverable and analyzed via genome browsers, blast search, and apollo annotation tool. The genomes of two additional species, Apis dorsata and A. florea are currently under analysis and will soon be incorporated.BeeBase is an archive and will not be updated. The most up-to-date bee genome data is now available through the navigation bar on the HGD Home page.
Proper citation: BeeBase (RRID:SCR_008966) Copy
http://meme.nbcr.net/meme/cgi-bin/gomo.cgi
Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy
http://topaz.gatech.edu/GeneTack/cgi/print_page.cgi?fn=db_home.html&title=Frameshift%20Database
Tools for frameshift prediction and a frameshift database.
Proper citation: GeneTack (RRID:SCR_011953) Copy
Web based instant protein network modeler for newly sequenced species. Web server designed to instantly construct genome scale protein networks using protein sequence data. Provides network visualization, analysis pages and solution for instant network modeling of newly sequenced species.
Proper citation: JiffyNet (RRID:SCR_011954) Copy
http://bio-bwa.sourceforge.net/
Software for aligning sequencing reads against large reference genome. Consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. First for sequence reads up to 100bp, and other two for longer sequences ranged from 70bp to 1Mbp.
Proper citation: BWA (RRID:SCR_010910) Copy
http://www.rcsb.org/#Category-welcome
Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.
Proper citation: Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (RRID:SCR_012820) Copy
Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.
Proper citation: KEGG (RRID:SCR_012773) Copy
A high-quality integrated knowledge resource specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrate species, and in the immunoglobulin superfamily (IgSF), MHC superfamily (MhcSF) and related proteins of the immune system (RPI) of vertebrates and invertebrates, serving as the global reference in immunogenetics and immunoinformatics. IMGT provides a common access to sequence, genome and structure Immunogenetics data, based on the concepts of IMGT-ONTOLOGY and on the IMGT Scientific chart rules. IMGT works in close collaboration with EBI (Europe), DDBJ (Japan) and NCBI (USA). IMGT consists of sequence databases, genome database, structure database, and monoclonal antibodies database, Web resources and interactive tools.
Proper citation: IMGT - the international ImMunoGeneTics information system (RRID:SCR_012780) Copy
Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.
Proper citation: PiGenome (RRID:SCR_013394) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.