Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://code.google.com/p/panda-tool/
A matlab toolbox for pipeline processing of diffusion MRI images. For each subject, PANDA can provide outputs in 2 types: i) diffusion parameter data that is ready for statistical analysis; ii) brain anatomical networks constructed by using diffusion tractography. Particularly, there are 3 types of resultant diffusion parameter data: WM atlas-level, voxel-level and TBSS-level. The brain network generated by PANDA has various edge definitions, e.g. fiber number, length, or FA-weighted. The key advantages of PANDA are as follows: # fully-automatic processing from raw DICOM/NIFTI to final outputs; # Supporting both sequential and parallel computation. The parallel environment can be a single desktop with multiple-cores or a computing cluster with a SGE system; # A very friendly GUI (graphical user interface).
Proper citation: PANDA (RRID:SCR_002511) Copy
http://www.nitrc.org/projects/tapir/
A set of command line tools allowing 2D and 3D image registration, mainly for medical imaging (although also relevant to other image registration problems).
Proper citation: TAPIR (RRID:SCR_002596) Copy
A toolbox with graphical user interfaces for processing infant brain MR images. Longitudinal (or single-time-point) multimodality (including T1, T2, and FA) (or single-modality) data can be processed using the toolbox. Main functions of the software (step by step) include image preprocessing, brain extraction, tissue segmentation and brain labeling. Linux operating system (64 bit) is required. A workstation or server with memory >8G is recommended for processing many images simutaneously. The graphical user interfaces and overall framework of the software are implemented in MATLAB. The image processing functions are implemented with the combination of C/C++, MATLAB, Perl and Shell languages. Parallelization technologies are used in the software to speed up image processing.
Proper citation: iBEAT (RRID:SCR_002470) Copy
An automated online framework for performing validation studies of skull-stripping methods. Registered users may download 40 T1 MRI volumes, skull-strip them with the algorithm of their choice, and upload their segmentation results to the SVE website. The server will then compare the 40 skull-stripped results against a set of manually generated brain masks. The server computes a series of measures for the uploaded data, including Jaccard and Dice measures. It also produces images for visualizing the spatial location of the segmentation errors relative to a common space. The results are archived on the server, and the measures are viewable by visitors to the site.
Proper citation: Segmentation Validation Engine (RRID:SCR_002591) Copy
http://www.dartmouth.edu/~nir/nirfast/
A software package for modeling Near-Infrared light transport in tissue and image reconstruction. This includes: Standard single wavelength absorption and reduced scatter, Multi-wavelength spectrally constrained models and Fluorescence models.
Proper citation: Nirfast (RRID:SCR_002503) Copy
Project to develop software tools and provide shared image validation databases for rigorous testing of non-rigid image registration algorithms. NIREP will extend the scope of prior validation projects by developing evaluation criteria and metrics using large image populations, using richly annotated image databases, using computer simulated data, and increasing the number and types of evaluation criteria. The goal of this project is to establish, maintain, and endorse a standardized set of relevant benchmarks and metrics for performance evaluation of nonrigid image registration algorithms. Furthermore, these standards will be incorporated into an exportable computer program to automatically evaluate the registration accuracy of nonrigid image registration algorithms.
Proper citation: Non-Rigid Image Registration Evaluation Project (RRID:SCR_002505) Copy
http://www.cognitiveatlas.org/
Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.
Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy
http://www.fmrib.ox.ac.uk/fsl/
Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.
Proper citation: FSL (RRID:SCR_002823) Copy
http://www.loni.usc.edu/Software/FFT
Java library used for the execution of discrete Fourier transforms in 1-D, 2-D and 3-D through the implementation of Fast Fourier Transform (FFT) algorithms. * The FFT library has been written in Java for portability across different platforms, integrated into a single jar file for easy implementation. * The FFT library provides forward and backward fast Fourier transforms in 1-D, 2-D and 3-D with an easy-to-use manner. * The FFT requires the length equal to a number with an integer power of two. This library automatically examines the input data and detects the length to prevent improper execution.
Proper citation: FFT Library (RRID:SCR_002698) Copy
http://www.LONI.usc.edu/Software/ShapeViewer
Java-based geometry viewer that supports file formats used by Center for Computational Biology (CCB) researchers and provides necessary viewing functions. ShapeViewer uses ShapeTools library support to read and display LONI Ucf, VTX XML, FreeSurfer, Minc Obj (both binary and ascii), Open Dx, Gifti, and OFF format data files.
Proper citation: LONI ShapeViewer (RRID:SCR_002695) Copy
http://www.loni.usc.edu/Software/SHIVA
A Java-based visualization and analysis application that can process 2D and 3D image files and provides convenient methods for users to overlay multiple datasets. * Simultaneous visualization of multiple image volumes. * Tools for labeling and masking of structures. * Framework for the Mouse Atlas Project.
Proper citation: Synchronized Histological Image Viewing Architecture (RRID:SCR_002690) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures
Proper citation: SumsDB (RRID:SCR_002759) Copy
http://web1.sph.emory.edu/bios/CBIS/download_page.php
A statistical and graphical visualization MATLAB toolbox for the analysis of fMRI data, called the Bayesian Spatial Model for activation and connectivity (BSMac). BSMac simultaneously performs whole-brain activation analyses at the voxel and region of interest levels as well as task-related functional connectivity (FC) analyses using a flexible Bayesian modeling framework (Bowman et al., 2008). BSMac allows for inputting data in either Analyze or Nifti file formats. The user provides information pertaining to subgroup memberships, scanning sessions, and experimental tasks (stimuli), from which the design matrix is constructed. BSMac then performs parameter estimation based on MCMC methods and generates plots for activation and FC, such as interactive 2D maps of voxel and region-level task-related changes in neural activity and animated 3D graphics of the FC results.
Proper citation: BSMac (RRID:SCR_009531) Copy
http://www.nitrc.org/projects/incf_nidstf/
Program to develop generic standards and tools to facilitate the recording, sharing, and reporting of neuroimaging metadata. It is expected that these efforts will greatly improve upon current practices for archiving and sharing neuroscience data. Neuroscience data, particularly those in neuroinformatics related areas such as neuroimaging and electrophysiology, are associated with a rich set of descriptive information often called metadata. For data archive, storage, sharing and re-use, metadata are of equal importance to primary data, as they define the methods and conditions of data acquisition (such as device characteristics, study/experiment protocol and parameters, behavioral paradigms, and subject/patient information), and statistical procedures. A further challenge for datasharing is the rapidly evolving nature of investigative methods and scientific applications.
Proper citation: INCF Neuroimaging Data Sharing (RRID:SCR_009497) Copy
http://www.nitrc.org/projects/vmagnotta/
A Diffusion Tensor fiber tracking software suite that includes streamline tracking tools. The fiber tracking includes a guided tracking tool that integrates apriori information into a streamlines algorithm. This suite of programs is built using the NA-MIC toolkit and uses the Slicer3 execution model framework to define the command line arguments. These tools can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3. NOTE: All new development is being managed in a github repository. Please visit, https://github.com/BRAINSia/BRAINSTools
Proper citation: GTRACT (RRID:SCR_009651) Copy
http://www.nitrc.org/projects/idea_lab/
Suite of tools for brain image analysis. Image manipulation, 2D visualization, linear alignment, BBSI, template-based bias correction, skullstrip. GUI Image analysis tools. Now modified to read/write single file nifti (.nii) format. Other packages to be added.
Proper citation: IDeA Lab brain image processing suite (RRID:SCR_009495) Copy
http://www.nitrc.org/projects/girt/
A method for group-wise image registration by pairwisely registering similar images identified using graph theoretic techniques. Particularly, they use sparse coding to estimate image similarity measures among images to be registered, yielding asymmetric, group-wise image similarity measures for each image to others in the group.
Proper citation: Groupwise Image Registration Toolbox (RRID:SCR_009492) Copy
http://www.nitrc.org/projects/hdni/
An international effort to establish resources necessary to study the application of neuroimaging measures as (surrogate) biomarkers in Huntington''s Disease (HD). The primary aims are to develop and apply software tools, imaging protocols, quality control procedures, data archiving, data distribution, and participation guidelines that will accelerate existing and prospective imaging studies.
Proper citation: HD Neuro-Informatics (RRID:SCR_009493) Copy
A user-friendly convenient toolkit to calculate Functional Connectivity (FC), Regional Homogeneity (ReHo), Amplitude of Low-Frequency Fluctuation (ALFF), Fractional ALFF (fALFF), Gragner causality and perform statistical analysis. You also can use REST to view your data, perform Monte Carlo simulation similar to AlphaSim in AFNI, calculate your images, regress out covariates, extract Region of Interest (ROI) time courses, reslice images, and sort DICOM files.
Proper citation: REST: a toolkit for resting-state fMRI (RRID:SCR_009641) Copy
https://github.com/BRAINSia/BRAINSTools/tree/master/BRAINSMush
Tool to generate brain volume mask from input of T1 and T2-weighted images alongside a region of interest brain mask. This volume mask omits dura, skull, eyes, etc. The program is built upon ITK and uses the Slicer3 execution model framework to define the command line arguments and can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3.
Proper citation: BRAINSMush (RRID:SCR_009485) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.