Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.cabiatl.com/mricro/
MRIcro allows Windows and Linux computers view medical images. It is a standalone program, but includes tools to complement SPM (software that allows neuroimagers to analyze MRI, fMRI and PET images). MRIcro allows efficient viewing and exporting of brain images. In addition, it allows neuropsychologists to identify regions of interest (ROIs, e.g. lesions). MRIcro can create Analyze format headers for exporting brain images to other platforms. Some features of MRIcro are: - Converts medical images to SPM friendly Analyze format. - View Analyze format images (big or little endian). - Create Analyze format headers (big or little endian). - Create 3D regions of interest (with computed volume & intensity). - Overlap multiple regions of interest. - Rotate images to match SPM template images. - Export images to BMP, JPEG, PNG or TIF format. - Yoked images: linked viewing of multiple images (e.g. view same coordinates of PET and MRI scans). Users familiar with other Windows programs will find that this software is fairly straightforward to use. Resting the mouse cursor over a button will cause a text hint to appear over the button. However, a tutorial with a step by step guide of how to use MRIcro with SPM is available.
Proper citation: MRIcro Software (RRID:SCR_008264) Copy
http://diademchallenge.org/data_sets.html
A software development competition, the DIADEM Challenge,to benefit the scientific community by encouraging the development of better software for automating three-dimensional reconstructions of neuronal arbors. The intent of the Sponsors is to ensure that the best software submitted for the competition is made available to the scientific community within a reasonable time and on reasonable terms. No purchase is necessary to enter or win. The competition will have two rounds. As of April 10, 2009, individuals and teams may register to participate in the competition and may download sets of image stacks (Data Sets) of non-human animal brains along with three-dimensional reconstructions for some of these Data Sets for training purposes. Submissions of software, including executable programs, supporting documentation, and reconstruction files for the Data Sets, must be uploaded to the competition website no later than April 9, 2010. In order to be eligible to win the competition, the individuals and at least one member of any teams whose submissions are selected for the Final Round (Finalists) must participate in the Final Round and scientific conference. Personal participation in the Final Round and scientific conference is important for two main reasons: first, because the Finalists software will be tested at the Final Round against additional Data Sets so that the judges can select a winner or winners, and second, because the larger scientific conference, of which the Final Round will be a part, is intended to foster extensive scientific interaction among neuroscientists and computational scientists, including plenary and poster sessions to discuss challenges, solutions, and future directions. There are 5 datasets, all of which have to be reconstructed for the qualifier phase. Once you have registered your group, dataset download information will be sent to you via E-mail. The 5 datasets are: - Cerebellar Climbing Fibers - Hippocampal CA3 Interneuron - Neocortical Layer 6 Axons - Neuromuscular Projection Fibers - Olfactory Projection Fibers Sponsors: The sponsors of this competition are: Allen Institute for Brain Science, Seattle, Washington; Howard Hughes Medical Institute (HHMI), Chevy Chase, Maryland; and Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.
Proper citation: DIADEM Challenge: DIgital reconstruction of Axonal and DEndritic Morphology (DIADEM) Software Development Competition (RRID:SCR_008262) Copy
http://www.brainvoyager.de/BV2000OnlineHelp/BrainVoyagerWebHelp/Talairach_brain_atlas.htm
The Talairach brain atlas visualized via BrainVoyager (Commercial software) can be used to visualize Brodmann areas as they were defined for the Talairach brain (Talairach & Tournaux, 1988) and to compare regions of subjects with respect to the Brodmann areas. The demarcated areas are based on the Talairach demon, which is a digitized version of the Talairach atlas and which has been transferred into BrainVoyager VOI files by Matthias Ruf, Mannheim. Using the Brodman.voi file you may ask questions like the following: What is the signal time course of subject N in experiment A within Brodmann area X ?. Note, however, that the defined areal boundaries should be used only as a rough guideline for determining the location of activated regions: There is substantial variation of histologically defined areas between subjects. Since cytoarchitectonically defined Brodmann areas are not available in vivo, we advise to use the provided information with care. The TalairachBrain.vmr file is located in the same folder as your BrainVoyager executable file. It can be loaded as any VMR project by using the Open... item in the File menu (or the Open icon). The TalairachBrain.vmr file is also loaded automatically when using the glass brain visualization tool.
Proper citation: BrainVoyager: Talairach Brain Atlas (RRID:SCR_008800) Copy
http://www.cumc.columbia.edu/dept/taub/index.html
An institute which conducts research of Alzheimer's, Parkinson's and other age-related brain diseases. This organization also provides clinical evaluations to patients with memory problems, Alzheimer's disease or other types of dementia. Furthermore, the institute leads multi-center clinical trials for the treatment and prevention of Alzheimer's, Parkinson's and other age-related brain diseases. There is a brain donation program for enrolled/examined patients. The Education Core of the Taub Institute sponsors community events and Continuing Medical Education programs, as well as the distribution of periodic newsletters and brochures highlighting research developments and other Alzheimer's topics.
Proper citation: Taub Institute for Research on Alzheimers Disease and the Aging Brain (RRID:SCR_008802) Copy
An Alzheimer's disease research center which supports new research and enhances ongoing research by providing core support to bringing together behavioral, biomedical, and clinical scientists. The Center conducts multidisciplinary research, trains scientists, and spreads information about Alzheimer's disease and related disorders to the general public. The principal goal of the Massachusetts ADRC is to support research in aging, Alzheimer's Disease and other related disorders. Researchers work with national and international multi-disciplinary teams to understand: normal aging, the transition from normal aging to mild forms of memory problems, and the later stages of dementia. The Massachusetts ADRC has an active brain donation program at the Massachusetts General Hospital (MGH) for patients as well as subjects enrolled in research studies.
Proper citation: Massachusetts Alzheimer's Disease Research Center (RRID:SCR_008764) Copy
https://www.radc.rush.edu/res/ext/home.htm
An Alzheimer's disease center which researches the cause, treatment and prevention of Alzheimer's disease with a focus on four main areas of research: risk factors for Alzheimer's and related disorders, the neurological basis of the disease, diagnosis, and treatment. Data includes a number of computed variables that are available for ROS, MAP and MARS cohorts. These variables are under categories such as affect and personality, chronic medical conditions, and clinical diagnosis. Specimens include ante-mortem and post-mortem samples obtained from subjects evaluated by ROS, MAP and clinical study cores. Specimen categories include: Brain tissue (Fixed and frozen), Spinal cord, Muscles (Post-mortem), and Nerve (Post-mortem), among other types of specimens. Data sharing policies and procedures apply to obtaining ante-mortem and post-mortem specimens from participants evaluated by the selected cohorts of the RADC.
Proper citation: Rush Alzheimer's Disease Center (RRID:SCR_008763) Copy
The NYU Alzheimer's Disease Center is part of the Department of Psychiatry at New York University School of Medicine. The center's goals are to advance current knowledge and understanding of brain aging and Alzheimer's disease, to expand the numbers of scientists working in the field of aging and Alzheimer's research, to work toward better treatment options and care for patients, and to apply and share its findings with healthcare providers, researchers, and the general public. The ADC's programs and services extend to other research facilities and to healthcare professionals through the use of its core facilities. The NYU ADC is made up of seven core facilities: Administrative Core, Clinical Core, Neuropathology Core, Education Core, Data Management and Biostatistics Core, Neuroimaging Core, and Psychosocial Core.
Proper citation: NYU Alzheimer's Disease Center (RRID:SCR_008754) Copy
NeuroImaging laboratory focused on detecting early brain changes associated with cognitive decline and dementia that manages the neuroimaging component of all studies at the Layton Aging and Alzheimer's Center including acquisition and archival services, as well as volumetric analysis of anonymized MRI scans. Assistance with resulting data is also available, including statistical analysis, and preparation of materials for presentation and publication. The Layton Center also manages a library of thousands of digitized MRI scans, including what is believed to be the largest collection of longitudinal MRI scans of cognitively intact elderly subjects. The OADC Neuroimaging Lab conducts MRI studies on both 3 and 7T MRI systems using advanced sequences, employing a multimodal approach to brain imaging research.
Proper citation: Layton Center NeuroImaging Laboratory (RRID:SCR_008823) Copy
http://www.sfn.org/index.aspx?pagename=brainfacts
Brain Facts is a 74-page primer on the brain and nervous system, published by SfN. Designed for a lay audience as an introduction to neuroscience, Brain Facts is also a valuable educational resource used by high school teachers and students who participate in Brain Awareness Week. The 2008 edition updates all sections and includes new information on brain development, learning and memory, language, neurological and psychiatric illnesses, potential therapies, and more. Download the full book (PDF) or download individual sections. All downloads are PDFs. Educators, request a copy of the Brain Facts book (paperback or CD) - contact BAW@SfN.org.
Proper citation: Brain Facts (RRID:SCR_008788) Copy
http://www.ohsu.edu/xd/research/centers-institutes/neurology/alzheimers/
An aging and Alzheimer's disease research center that conducts studies of treatments, technologies for patient support, genetics, neuroimaging, and pathology. The Center's clinical research focuses on understanding differing rates of progression and cognitive decline as compared to optimal cognitive health in the elderly and are currently studying methods of gauging the progression of Alzheimer’s disease through research in genetics, neuroimaging, and cerebrospinal fluid biomarkers. Clinical trials performed at the Center include drugs targeted to ameliorate the symptoms of memory failure and slow the progression of disease.
Proper citation: OHSU Layton Aging and Alzheimer's Disease Center (RRID:SCR_008821) Copy
http://www.med.upenn.edu/cndr/biosamples-brainbank.html
A brain and tissue bank that contains human brain samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and other related neurodegenerative dementias and movement disorders. This brain bank serves as a resource for scientists and researchers, providing access to tissue samples for further research. While priority is given to University of Pennsylvania researchers, this bank will provide requests to researchers not associated with the University of Pennsylvania. This tissue bank accepts donations from those seeing a University of Pennsylvania physician or collaborator.
Proper citation: University of Pennslyvania Brain Bank (RRID:SCR_008820) Copy
http://psychiatry.stanford.edu/alzheimer/
Portal for gerontology research with a variety of clinical, research and educational programs, with the aim of improving the lives of those affected by Alzheimer's Disease and memory losses associated with normal aging. The Center investigates the nature of Alzheimer's Disease, its progression over time, its response to treatments, and problems patients and caregivers experience in dealing with the changes that occur. It also conducts studies that look at changes that occur over the course of normal aging and have a Normal Aging Brain Donor Program. The Aging Clinical Research Center puts out a newsletter that showcases various projects and includes informative articles on dementia.
Proper citation: Stanford/VA Aging Clinical Research Center (RRID:SCR_008678) Copy
The WEB ATLAS contains photographs of dissected brains showing important structures. The diagrams folder contains drawings showing functionally important parts of the brain as well as drawings of dissections adapted from C.G. Smith. We are particularly pleased to make Nan Cheney''s medical illustrations of the brain and the head available. The STROKE MODEL portion of the website has syndromes associated with strokes of different vessels of the brain as well as extensive diagrams and tables about the vessels of the brain. The 3D RECONSTRUCTIONS featured on this website were made from MRI scans through the brain - where indicated the source material was from the NIH Visible Human Project. The website will also contain material important for the neuroanatomy labs for med students at UBC. Weekly quizzes will help you keep up with studying the material, the podcasts will help you review material presented in the labs, and the weekly wikis will help you share information with your peers.
Proper citation: Neuroanatomy at UBC (RRID:SCR_008744) Copy
http://crezoo.crt-dresden.de/crezoo/
Database of helpful set of CreERT2 driver lines expressing in various regions of the developing and adult zebrafish. The lines have been generated via the insertion of a mCherry-T2A-CreERT2 in a gene trap approach or by using promoter fragments driving CreERT2. You can search the list of all transgenic lines or single entries by insertions (gene) or expression patterns (anatomy/region). In most cases the CreERT2 expression profile using in situ hybridization at 24 hpf and 48 hpf is shown, but also additional information (e.g. mCherry or CreERT2 expression at adult stages, transactivation of a Cre-dependent reporter line) is displayed. Currently, not all insertions have been mapped to a genomic location but the database will be regularly updated adding newly generated insertions and mapping information. Your help in improving and broadening the database by giving your opinion or knowledge of expression patterns is highly appreciated.
Proper citation: CreZoo (RRID:SCR_008919) Copy
http://www.ttuhsc.edu/centers/aging/giabrainbank.aspx
The Brain Bank was developed with two service-minded objectives: provide a free brain autopsy to confirm clinical diagnosis of dementia, and collect, bank and provide brain tissue to qualified scientific researchers studying diseases related to dementia. By working together, patients and researchers can help us understand the origins of neurodegenerative disease and eventually improve the treatment and care of dementia. The clinical diagnosis of Alzheimer's disease can only be confirmed by brain autopsy, or the examination of brain tissue after death. This examination will determine a patients's precise type of dementia. To confirm the diagnosis of Alzheimer's, for example, the brain tissue is examined for amyloid plaques and neurofibrillary tangles by a neuropathologist. The presence of these plaques and tangles will verify the clinical diagnosis of Alzheimer's disease. While it is important to us to enroll patients with dementia, it is equally important to enroll people with no dementia. These subjects are termed as controls and the brain tissue from controls will enable researchers to make comparisons to brain tissue from dementia patients. We are seeking donations from individuals who have had an age-related neurodegenerative disease like Alzheimer's, Parkinson's, Lewy Body or other related dementia.
Proper citation: GIA Brain Bank Program (RRID:SCR_008877) Copy
http://mialab.mrn.org/index.html
MIALAB, headed by Dr. Vince Calhoun, focuses on developing and optimizing methods and software for quantitative analysis of structure and function in medical images with particular focus on the study of psychiatric illness. We work with many types of data, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), electroencephalography (EEG), structural imaging and genetic data. Much of our time is spent working on new methods for flexible analysis of brain imaging data. The use of data driven approaches is very useful for extracting potentially unpredictable patterns within these data. However such methods can be further improved by incorporating additional prior information as constraints, in order to benefit from what we know. To this end, we draw heavily from the areas of image processing, adaptive signal processing, estimation theory, neural networks, statistical signal processing, and pattern recognition.
Proper citation: MIALAB - Medical Image Analysis Lab (RRID:SCR_006089) Copy
http://www.brain-map.org/api/index.html
API and demo application for accessing the Allen Brain Atlas Mouse Brain data. Data available via the API includes download high resolution images, expression data from a 3D volume, 3D coordinates of the Allen Reference Atlas, and searching genes with similar gene expression profiles using NeuroBlast. Data made available includes: * High resolution images for gene expression, connectivity, and histology experiments, as well as annotated atlas images * 3-D expression summaries registered to a reference space for the Mouse Brain and Developing Mouse Brain * Primary microarray results for the Human Brain and Non-Human Primate * RNA sequencing results for the Developing Human Brain * MRI and DTI files for Human Brain The API consists of the following resources: * RESTful model access * Image download service * 3-D expression summary download service * Differential expression search services * NeuroBlast correlative searches * Image-to-image synchronization service * Structure graph download service
Proper citation: Allen Brain Atlas API (RRID:SCR_005984) Copy
A web-compliant application that allows connectomics visualization by converting datasets to web-optimized tiles, delivering volume transforms to client devices, and providing groups of users with connectome annotation tools and data simultaneously via conventional internet connections. Viking is an extensible tool for connectomics analysis and is generalizable to histomics applications.
Proper citation: Viking Viewer for Connectomics (RRID:SCR_005986) Copy
http://www.nitrc.org/projects/abc
A comprehensive processing pipeline developed and used at University of North Carolina and University of Utah for brain MRIs. The processing pipeline includes image registration, filtering, segmentation and inhomogeneity correction. The tool is cross-platform and can be run within 3D Slicer or as a stand-alone program. The image segmentation algorithm is based on the EMS software developed by Koen van Leemput.
Proper citation: ABC (Atlas Based Classification) (RRID:SCR_005981) Copy
http://www.fmriconsulting.com/brodmann/
An atlas that facilitates fMRI analysis understanding by providing access to all of the functions that have been associated with each of the 52 Brodmann's areas or corresponding gyri. Links to main publications supporting the findings are provided in PubMed ID format. Brodmann's areas with similar functions and locations have been collapsed into a single page. The word left or right has been added indicating a lateralized function. All the abstracts published on PubMed on fMRI and brain PET studies in which the Brodmann's area or its anatomical correlate were mentioned have been reviewed up to August 2008. Abstracts with poorly described experimental methods or findings clearly conflicting with established knowledge provided by the clinical model were excluded. Studies on patients were also excluded.
Proper citation: Brodmann's Interactive Atlas (RRID:SCR_006368) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.