Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 548 results
Snippet view Table view Download 548 Result(s)
Click the to add this resource to a Collection

http://www.perkinelmer.com/pages/020/cellularimaging/products/volocity.xhtml

3D image analysis software to visualize, analyze and validate 3D fluorescence images from a wide range of confocal microscopy, widefield and high content screening systems. It is fully integrated for a seamless user experience.

Proper citation: Volocity 3D Image Analysis Software (RRID:SCR_002668) Copy   


http://fmri.wfubmc.edu/software/Bpm

Software toolbox that performs SPM analysis with voxel-wise imaging covariates. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in Matlab with a user-friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely used T-field, has been implemented in the correlation analysis for more accurate results. Requirements: * SPM2 or SPM5 * MATLAB version 6.5 or higher

Proper citation: WFU Biological Parametric Mapping Toolbox (RRID:SCR_002613) Copy   


http://www.loni.usc.edu/Software/SHIVA

A Java-based visualization and analysis application that can process 2D and 3D image files and provides convenient methods for users to overlay multiple datasets. * Simultaneous visualization of multiple image volumes. * Tools for labeling and masking of structures. * Framework for the Mouse Atlas Project.

Proper citation: Synchronized Histological Image Viewing Architecture (RRID:SCR_002690) Copy   


  • RRID:SCR_002609

    This resource has 100+ mentions.

http://www.vaa3d.org

A handy, fast, and versatile 3D/4D/5D Image Visualization & Analysis System for Bioimages & Surface Objects. Vaa3D is a cross-platform (Mac, Linux, and Windows) tool for visualizing large-scale (gigabytes, and 64-bit data) 3D/4D/5D image stacks and various surface data. It is also a container of powerful modules for 3D image analysis (cell segmentation, neuron tracing, brain registration, annotation, quantitative measurement and statistics, etc) and data management. Vaa3D is very easy to be extended via a powerful plugin interface. For example, many ITK tools are being converted to Vaa3D Plugins. Vaa3D-Neuron is built upon Vaa3D to make 3D neuron reconstruction much easier. In a recent Nature Biotechnology paper (2010, 28(4), pp.348-353) about Vaa3D and Vaa3D-Neuron, an order of magnitude of performance improvement (both reconstruction accuracy and speed) was achieved compared to other tools.

Proper citation: Vaa3D (RRID:SCR_002609) Copy   


http://tipl.labsolver.org

A lightweight C++ template library designed mainly for medical imaging processing. The design paradigm follows generic programming, and the purpose is to provide an easy-to-use and also ready-to-use library. The code is template-based, and only header files are needed to be included to the source code. This library provides the following functions: # DICOM (r), Analyze(r), Nifti (r/w), and MATLAB MAT V4 (r/w) # numerical: add, multiply, gradient. # interpolation: linear, gaussian radial basis # filters: mean, gaussian, laplacian, sobel, anisotropic diffusion # morphological processing: erosion, expansion, opening, closing # template-based Fourier transform # linear coregistration: rigid body, affine transform, least square fit, mutual information # nonlinear coregistration: The Large Deformation Diffeomorphic Metric Mapping (LDDMM)

Proper citation: Template Image Processing Library (RRID:SCR_002600) Copy   


  • RRID:SCR_002605

    This resource has 1+ mentions.

http://www.turtleseg.org

An interactive segmentation tool originally designed for 3D medical images. Accurate and automatic 3D medical image segmentation remains an elusive goal and manual intervention is often unavoidable. TurtleSeg implements techniques that allow the user to provide intuitive yet minimal interaction for guiding the 3D segmentation process.

Proper citation: TurtleSeg (RRID:SCR_002605) Copy   


  • RRID:SCR_002596

    This resource has 50+ mentions.

http://www.nitrc.org/projects/tapir/

A set of command line tools allowing 2D and 3D image registration, mainly for medical imaging (although also relevant to other image registration problems).

Proper citation: TAPIR (RRID:SCR_002596) Copy   


  • RRID:SCR_002776

    This resource has 10+ mentions.

http://www.nikoninstruments.com/Products/Software/NIS-Elements-Basic-Research

Software tool for acquisition and device control for standard research applications, requiring four dimensional imaging. Provides access to advanced image capture, archiving, and analysis solutions that are easy-to-use and provide maximum workflow. Handles multi dimensional imaging with support for capture, display, data management, analysis and additional options for peripheral device control, and multi-dimensional acquisition. Provides advanced image processing options such as database capabilities and report generation, intensity over time measurement, and Extended Depth of Focus functionality.

Proper citation: NIS-Elements Basic Research (RRID:SCR_002776) Copy   


  • RRID:SCR_002961

    This resource has 1+ mentions.

http://www.math.uh.edu/~mpapadak/centerline/

An application for the automatic segmentation and tracing of three-dimensional neuronal images.

Proper citation: centerline (RRID:SCR_002961) Copy   


http://www.gimp.org

A software application for such tasks as photo retouching, image composition and image authoring. It has many capabilities such as it can be used as a simple paint program, an expert quality photo retouching program, an online batch processing system, a mass production image renderer, an image format converter, etc. GIMP is expandable and extensible and designed to be augmented with plug-ins and extensions. The advanced scripting interface allows everything from the simplest task to the most complex image manipulation procedures to be easily scripted.

Proper citation: GNU Image Manipulation Program (RRID:SCR_003182) Copy   


  • RRID:SCR_003487

    This resource has 10+ mentions.

http://cng.gmu.edu:8080/Lm

A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.

Proper citation: L-Measure (RRID:SCR_003487) Copy   


  • RRID:SCR_001204

http://ccb.jhu.edu/software/sim4cc/

Software tool as cross species spliced alignment program.Heuristic sequence alignment tool for comparing cDNA sequence with genomic sequence containing homolog of gene in another species.

Proper citation: sim4cc (RRID:SCR_001204) Copy   


  • RRID:SCR_001398

    This resource has 100+ mentions.

https://www.mristudio.org/

An image processing program running under Windows suitable for such tasks as tensor calculation, color mapping, fiber tracking, and 3D visualization. Most of operations can be done with only a few clicks. This tool evolved from DTI Studio. Tools in the program can be grouped in the following way: * Image Viewer * Diffusion Tensor Calculations * Fiber Tracking and Editing * 3D Visualization * Image File Management * Region of Interesting (ROI) Drawing and Statistics * Image Registration

Proper citation: MRI Studio (RRID:SCR_001398) Copy   


  • RRID:SCR_001728

    This resource has 1+ mentions.

http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. A collection of software modules for image data handling, pre-processing, segmentation, inspection, editing, post-processing, and secondary analysis. These modules can be scripted to accomplish a variety of automated image analysis tasks. All of the modules are written in accordance with software practices of the Insight Toolkit Community. Importantly, all modules are accessible through the Python scripting language which allows users to create scripts to accomplish sophisticated associative image analysis tasks over multi-dimensional microscopy image data. This language works on most computing platforms, providing a high degree of platform independence. Another important design principle is the use of standardized XML file formats for data interchange between modules.

Proper citation: Farsight Toolkit (RRID:SCR_001728) Copy   


http://www.stat.cmu.edu/~fiasco/

Collection of software designed to analyze fMRI data using a series of processing steps. The input is the raw data, and the outputs are statistical brain maps showing regions of neural activation. Corrections for different systematic variations in the k-space (raw) data obtained from an fMRI session (head motion, ghosting, etc) are performed first. The image is then reconstructed (using the Fast Fourier Transform) and statistical analyses run. The user has a great deal of flexibility in choosing which corrections and statistics are executed. FIASCO emphasizes correct statistical models, for example for group comparisons.

Proper citation: Functional Image Processing software Computational Olio (RRID:SCR_001689) Copy   


  • RRID:SCR_001847

    This resource has 10000+ mentions.

http://surfer.nmr.mgh.harvard.edu/

Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.

Proper citation: FreeSurfer (RRID:SCR_001847) Copy   


  • RRID:SCR_001686

    This resource has 1+ mentions.

http://www.cabiatl.com/mricro/ezdicom/index.html

Software designed to display most medical images, including MRI, CT, X-ray, and ultrasound. All versions of ezDICOM can automatically detect the format of a medical image and display it on the screen. The software is easy to use, mature, and can view a wide range of medical images including proprietary formats as well as images in the DICOM standard. The software will also automatically recognize and display Analyze, GE (LX, Genesis), Interfile, Siemens (Magnetom, Somatom) and NEMA images.

Proper citation: ezDICOM (RRID:SCR_001686) Copy   


http://www.idoimaging.com/program/280

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 6, 2023.Comprised of a large array of sophisticated programs, this comprehensive software package with tools based around the MINC file format. Utilities are provided for conversion, viewing, editing, registering, segmentation, and a wide array of analysis. Many programs are in Perl. MINC software tools for neurological imaging are free. Input format: Analyze, DICOM, Minc

Proper citation: MINC Brain Imaging Toolbox (RRID:SCR_003519) Copy   


  • RRID:SCR_002166

    This resource has 10+ mentions.

http://www.nitrc.org/projects/voxbo

Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.

Proper citation: VoxBo (RRID:SCR_002166) Copy   


http://www.mevislab.de/index.php?id=6

Modular framework for the development of image processing algorithms and visualization and interaction methods, with a special focus on medical imaging. It includes advanced medical imaging modules for segmentation, registration, volumetry, and quantitative morphological and functional analysis. The platform allows fast integration and testing of new algorithms and the development of application prototypes that can be used in clinical environments. In MeVisLab, individual image processing, visualization and interaction modules can be combined to complex image processing networks using a graphical programming approach. The algorithms can easily be integrated using a modular, platform-independent C++ class library. An abstract, hierarchical definition language allows the design of efficient graphical user interfaces, hiding the complexity of the underlying module network to the end user. JavaScript components can be added to implement dynamic functionality on both the network and the user interface level. MeVisLab is based on the Qt application framework, the OpenInventor 3D visualization toolkit and OpenGL. Several clinical prototypes have been realized on the basis of MeVisLab, including software assistants for neuro-imaging, dynamic image analysis, surgery planning, and vessel analysis. Feature Overview: :- Basic image processing algorithms and advanced medical imaging modules :- Full featured, flexible 2D/3D visualization and interaction tools :- High performance for large datasets :- Modular, expandable C++ image processing library :- Graphical programming of complex, hierarchical module networks :- Object-oriented GUI definition and scripting :- Full scripting functionality using Python and JavaScript :- DICOM support and PACS integration :- Intuitive user interface :- Integrated movie and screenshot generation for demonstration purposes :- Generic integration of the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) :- Cross-platform support for Windows, Linux, and MacOS X :- Available for 64-bit operating systems

Proper citation: Medical Image Processing and Visualization (RRID:SCR_002055) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X