Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 699 results
Snippet view Table view Download 699 Result(s)
Click the to add this resource to a Collection

https://medschool.cuanschutz.edu/diabetes-research-center

Center to facilitate diabetes research at University of Colorado by integrating interdisciplinary basic, translational, and clinical diabetes research base; providing infrastructure and resources that are indispensable for continued discovery and progress towards diabetes research and developing improved prediction and disease prevention;providing P&F and enrichment programs to support DRC investigators and their trainees, and recruit new and young investigators into diabetes research.

Proper citation: University of Colorado Diabetes Research Center (RRID:SCR_022897) Copy   


https://ncdiabetesresearch.org/

Interactive regional diabetes research community across four premiere research institutions in North Carolina, who currently garner over $70 million annually for support of their diabetes research: Duke University (Duke), The University of North Carolina at Chapel Hill (UNC), Wake Forest School of Medicine (WF), and North Carolina A&T State University (NC A&T State). NCDRC supports Research Cores that represent unique strengths at each institution.

Proper citation: North Carolina Diabetes Research Center (RRID:SCR_022896) Copy   


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301786/

Device to control spatial and temporal variations in oxygen tensions to better replicate in vivo biology. Consists of three parallel connected tissue chambers and oxygen scavenger channel placed adjacent to these tissue chambers. Provides consistent control of spatial and temporal oxygen gradients in tissue microenvironment and can be used to investigate important oxygen dependent biological processes present in cancer, ischemic heart disease, and wound healing.

Proper citation: Microfluidic device to attain high spatial and temporal control of oxygen (RRID:SCR_017131) Copy   


https://nih-lurn.org/

A research consortium with the long term goal of developing and testing measurement tools to describe symptoms of lower urinary tract dysfunction (LUTD) in women and men. The group plans to study targeted populations of patients with LUTD in order to expand our understanding of the causes of symptoms and common ways that symptoms change over time. The researchers will also collect biosamples from patients for current and future study of LUTD.

Proper citation: Symptoms of Lower Urinary Tract Dysfunction Research Network (LURN) (RRID:SCR_014378) Copy   


  • RRID:SCR_022275

    This resource has 1+ mentions.

https://maayanlab.cloud/sigcom-lincs

Web server that serves over million gene expression signatures processed, analyzed, and visualized from LINCS, GTEx, and GEO. Data and metadata search engine for gene expression signatures.

Proper citation: SigCom LINCS (RRID:SCR_022275) Copy   


  • RRID:SCR_005726

    This resource has 500+ mentions.

http://toppgene.cchmc.org/

ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.

Proper citation: ToppGene Suite (RRID:SCR_005726) Copy   


  • RRID:SCR_002637

    This resource has 1+ mentions.

http://www.gudmap.org/Resources/Ontologies.html

A high-resolution ontology has been developed by members of the GUDMAP consortium to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The GUDMAP ontology encompasses Theiler stage (TS) 17-27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterized structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system.

Proper citation: GUDMAP Ontology (RRID:SCR_002637) Copy   


http://genespeed.ccf.org/home/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.

Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy   


  • RRID:SCR_002771

    This resource has 1+ mentions.

http://www.cbil.upenn.edu/RAD

THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.

Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy   


http://www2.niddk.nih.gov/Research/Resources/ObesityResources.htm

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 23, 2017. This website contains resources for obesity researchers including: Obesity Databases, Registries and Information; Obesity Multicenter Clinical Research; Obesity Basic Research Networks; Obesity Reagents; Obesity Services; Obesity Standardization Programs; Obesity Tissues, Cells, Animals; Obesity Useful Tools.

Proper citation: NIDDK- National Institute of Diabetes and Digestive and Kidney Diseases Obesity Resources (RRID:SCR_003074) Copy   


  • RRID:SCR_002968

http://www.mybiosoftware.com/population-genetics/332

A tool for SNP Search and downloading with local management. It also offers flanking sequence downloading and automatic SNP filtering. It requires Windows and .NET Framework.

Proper citation: SNPHunter (RRID:SCR_002968) Copy   


http://www.autoimmunitycenters.org/

Nine centers that conduct clinical trials and basic research on new immune-based therapies for autoimmune diseases. This program enhances interactions between scientists and clinicians in order to accelerate the translation of research findings into medical applications. By promoting better coordination and communication, and enabling limited resources to be pooled, ACEs is one of NIAID''''s primary vehicles for both expanding our knowledge and improving our ability to effectively prevent and treat autoimmune diseases. This coordinated approach incorporates key recommendations of the NIH Autoimmune Diseases Research Plan and will ensure progress in identifying new and highly effective therapies for autoimmune diseases. ACEs is advancing the search for effective treatments through: * Diverse Autoimmunity Expertise Medical researchers at ACEs include rheumatologists, neurologists, gastroenterologists, and endocrinologists who are among the elite in their respective fields. * Strong Mechanistic Foundation ACEs augment each clinical trial with extensive basic studies designed to enhance understanding of the mechanisms responsible for tolerance initiation, maintenance, or loss, including the role of cytokines, regulatory T cells, and accessory cells, to name a few. * Streamlined Patient Recruitment The cooperative nature of ACEs helps scientists recruit patients from distinct geographical areas. The rigorous clinical and basic science approach of ACEs helps maintain a high level of treatment and analysis, enabling informative comparisons between patient groups.

Proper citation: Autoimmunity Centers of Excellence (RRID:SCR_006510) Copy   


http://www.nkdep.nih.gov/lab-evaluation/gfr-calculators.shtml

Glomerular Filtration Rate (GFR) calculators to estimate kidney function for adults (MDRD GFR Calculator) and children (Schwartz GFR Calculator). In adults, the recommended equation for estimating glomerular filtration rate (GFR) from serum creatinine is the Modification of Diet in Renal Disease (MDRD) Study equation. The IDMS-traceable version of the MDRD Study equation is used. Currently the best equation for estimating glomerular filtration rate (GFR) from serum creatinine in children is the Bedside Schwartz equation for use with creatinine methods with calibration traceable to IDMS. Using the original Schwartz equation with a creatinine value from a method with calibration traceable to IDMS will overestimate GFR.

Proper citation: Glomerular Filtration Rate Calculators (RRID:SCR_006443) Copy   


http://www.nkdep.nih.gov/lab-evaluation/gfr/creatinine-standardization.shtml

Standard specification to reduce inter-laboratory variation in creatinine assay calibration and therefore enable more accurate estimates of glomerular filtration rate (eGFR). Created by NKDEP''''s Laboratory Working Group in collaboration with the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and the European Communities Confederation of Clinical Chemistry (now called the European Federation of Clinical Chemistry and Laboratory Medicine), the effort is part of a larger NKDEP initiative to help health care providers better identify and treat chronic kidney disease in order to prevent or delay kidney failure and improve patient outcomes. Recommendations are intended for the USA and other countries or regions that have largely completed standardization of creatinine calibration to be traceable to an isotope dilution mass spectrometry (IDMS) reference measurement procedure. The program''''s focus is to facilitate the sharing of information to assist in vitro diagnostic manufacturers, clinical laboratories, and others in the laboratory community with calibrating their serum creatinine measurement procedures to be traceable to isotope dilution mass spectrometry (IDMS). The program also supports manufacturers'''' efforts to encourage their customers in the laboratory to coordinate use of standardized creatinine methods with implementation of a revised GFR estimating equation appropriate for use with standardized creatinine methods. Communication resources and other information for various segments of the laboratory community are available in the Creatinine Standardization Recommendations section of the website. Also available is a protocol for calibrating creatinine measurements using whole blood devices. The National Institute for Standards and Technology (NIST) released a standard reference material (SRM 967 Creatinine in Frozen Human Serum) for use in establishing calibrations for routine creatinine measurement procedures. SRM 967 was validated to be commutable with native serum samples for many routine creatinine procedures and is useful to establish or verify traceability to an IDMS reference measurement procedure. Establishing calibrations for serum creatinine methods using SRM 967 not only provides a mechanism for ensuring more accurate measurement of serum creatinine, but also enables more accurate estimates of GFR. For clinical laboratories interested in independently checking the calibration supplied by their creatinine reagent suppliers/manufacturers, periodic measurement of NIST SRM 967 should be considered for inclusion in the lab''''s internal quality assurance program. To learn more about SRM 967, including how to purchase it, visit the NIST website, https://www-s.nist.gov/srmors/quickSearch.cfm

Proper citation: Creatinine Standardization Program (RRID:SCR_006441) Copy   


http://www.usrds.org/

Annual report, standard analysis files and an online query system from the national data registry on the end-stage renal disease (ESRD) population in the U.S., including treatments and outcomes. The Annual Data Report is divided into two parts. The Atlas section displays data using graphs and charts. Specific chapters address trends in ESRD patient populations, quality of ESRD care, kidney transplantation outcomes, costs of ESRD care, Healthy People 2010 objectives, chronic kidney disease, pediatric ESRD, and cardiovascular disease special studies. The Reference Tables are devoted entirely to the ESRD population. The RenDER (Renal Data Extraction and Referencing) online data query system allows users to build data tables and maps for the ESRD population. National, state, and county level data are available. USRDS staff collaborates with members of Centers for Medicare & Medicaid Services (CMS), the United Network for Organ Sharing (UNOS), and the ESRD networks, sharing datasets and actively working to improve the accuracy of ESRD patient information.

Proper citation: United States Renal Data System (RRID:SCR_006699) Copy   


  • RRID:SCR_006633

    This resource has 1000+ mentions.

http://rdp.cme.msu.edu

A database which provides ribosome related data services to the scientific community, including online data analysis, rRNA derived phylogenetic trees, and aligned and annotated rRNA sequences. It specifically contains information on quality-controlled, aligned and annotated bacterial and archaean 16S rRNA sequences, fungal 28S rRNA sequences, and a suite of analysis tools for the scientific community. Most of the RDP tools are now available as open source packages for users to incorporate in their local workflow.

Proper citation: Ribosomal Database Project (RRID:SCR_006633) Copy   


http://diabetes.niddk.nih.gov/dm/pubs/america/

A compilation and assessment of epidemiologic, public health, and clinical data on diabetes and its complications in the United States. Published by the National Diabetes Data Group of the National Institute of Diabetes and Digestive and Kidney Diseases, the book contains 36 chapters organized in five areas: * the descriptive epidemiology of diabetes in the United States based on national surveys and community-based studies, including prevalence, incidence, sociodemographic and metabolic characteristics, risk factors for developing diabetes, and mortality * the myriad complications that affect patients with diabetes * characteristics of therapy and medical care for diabetes * economic aspects, including health insurance and health care costs * diabetes in special populations, including African Americans, Hispanics, Asian and Pacific Islanders, Native Americans, and pregnant women. Diabetes in America, 2nd Edition, has been designed to serve as a reliable scientific resource for assessing the scope and impact of diabetes and its complications, determining health policy and priorities in diabetes, and identifying areas of need in research. The intended audience includes health policy makers at the local and Federal levels who need a sound quantitative base of knowledge to use in decision making; clinicians who need to know the probability that their patients will develop diabetes and the prognosis of the disease for complications and premature mortality; persons with diabetes and their families who need sound information on which to make decisions about their life with diabetes; and the research community which needs to identify areas where important scientific knowledge is lacking.

Proper citation: Diabetes in America (RRID:SCR_006754) Copy   


  • RRID:SCR_006636

http://ligand-expo.rutgers.edu/

An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.

Proper citation: Ligand Expo (RRID:SCR_006636) Copy   


  • RRID:SCR_006542

    This resource has 50+ mentions.

https://repository.niddk.nih.gov/home/

NIDDK Central Repositories are two separate contract funded components that work together to store data and samples from significant, NIDDK funded studies. First component is Biorepository that gathers, stores, and distributes biological samples from studies. Biorepository works with investigators in new and ongoing studies as realtime storage facility for archival samples.Second component is Data Repository that gathers, stores and distributes incremental or finished datasets from NIDDK funded studies Data Repository helps active data coordinating centers prepare databases and incremental datasets for archiving and for carrying out restricted queries of stored databases. Data Repository serves as Data Coordinating Center and website manager for NIDDK Central Repositories website.

Proper citation: NIDDK Central Repository (RRID:SCR_006542) Copy   


http://www.niaid.nih.gov/topics/transplant/research/Pages/fundedBasics.aspx#NHPTCSP

Cooperative program for research on nonhuman primate models of kidney, islet, heart, and lung transplantation evaluating the safety and efficacy of existing and new treatment regimens that promote the immune system''''s acceptance of a transplant and to understand why the immune system either rejects or does not reject a transplant. This program bridges the critical gap between small-animal research and human clinical trials. The program supports research into the immunological mechanisms of tolerance induction and development of surrogate markers for the induction, maintenance, and loss of tolerance.

Proper citation: Nonhuman Primate Transplantation Tolerance Cooperative Study Group (RRID:SCR_006847) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X