Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 34 results
Snippet view Table view Download 34 Result(s)
Click the to add this resource to a Collection

http://bishopw.loni.ucla.edu/AIR5/

A tool for automated registration of 3D (and 2D) images within and across subjects and within and sometimes across imaging modalities. The AIR library can easily incorporate automated image registration into site specific programs adapted to your particular needs.

Proper citation: Automated Image Registration (RRID:SCR_005944) Copy   


http://www.unc.edu/~grwu/Software.html

A software plugin for 3D Slicer that matches morphological signatures of medical images automatically. HAMMER is an acronym for Hierarchical Attribute Matching Mechanism for Elastic Registration (Dinggang Shen, Christos Davatzikos, HAMMER: Hierarchical Attribute Matching Mechanism for Elastic Registration, IEEE Trans. on Medical Imaging, 21(11):1421-1439, Nov 2002) - an elastic registration algorithm for medical images, matching morphological signatures of images in a hierarchical multi-scale regime. White matter lesion (WML) segmentation is a novel multi-spectral WML segmentation protocol via incorporating information from T1-w, T2-w, PD-w and FLAIR MR brain images. (Zhiqiang Lao, Dinggang Shen, Dengfeng Liu, Abbas F Jawad, Elias R Melhem, Lenore J Launer, Nick R Bryan, Christos Davatzikos, Computer-Assisted Segmentation of White Matter Lesions in 3D MR images, Using Pattern Recognition, Academic Radiology, 15(3):300-313, March 2008).

Proper citation: Hammer And WML Modules for 3D Slicer (RRID:SCR_005980) Copy   


http://www.picsl.upenn.edu/ANTS/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Software package designed to enable researchers with advanced tools for brain and image mapping. Many of the ANTS registration tools are diffeomorphic*, but deformation (elastic and BSpline) transformations are available. Unique components of ANTS include multivariate similarity metrics, landmark guidance, the ability to use label images to guide the mapping and both greedy and space-time optimal implementations of diffeomorphisms. The symmetric normalization (SyN) strategy is a part of the ANTS toolkit as is directly manipulated free form deformation (DMFFD). *Diffeomorphism: a differentiable map with differentiable inverse. In general, these maps are generated by integrating a time-dependent velocity field. ANTS Applications: * Gray matter morphometry based on the jacobian and/or cortical thickness. * Group and single-subject optimal templates. * Multivariate DT + T1 brain templates and group studies. * Longitudinal brain mapping -- special similarity metric options. * Neonatal and pediatric brain segmentation. * Pediatric brain mapping. * T1 brain mapping guided by tractography and connectivity. * Diffusion tensor registration based on scalar or connectivity data. * Brain mapping in the presence of lesions. * Lung and pulmonary tree registration. * User-guided hippocampus labeling, also of sub-fields. * Group studies and statistical analysis of cortical thickness, white matter volume, diffusion tensor-derived metrics such as fractional anisotropy and mean diffusion.

Proper citation: ANTS - Advanced Normalization ToolS (RRID:SCR_004757) Copy   


http://www.med.unc.edu/bric/ideagroup/free-softwares/intergroup-image-registration

Software package that provides solutions for registering two groups of images, which are the necessary steps for many brain-related applications.

Proper citation: Inter-Group Registration Toolbox (RRID:SCR_002404) Copy   


http://www.nitrc.org/projects/frat/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on November 05, 2013. It has been superseeded by the CALATK, available here http://www.calatk.org c++ libraries and applications for performing fluid registration based operations on 2D and 3D images. The registration method is based on the large displacement diffeomorphic mapping (LDDM) registration method and implements discretized fluid registration. This registration method is then applied to time series analysis, cross-sectional atlas building, and longitudinal atlas building. The individual tool components are: * LDDM: Fluid registration between two images. * TimeSeries: Time series analysis of longitudinal data for a single subject. * AtlasBuilder: Cross-sectional atlas building for a population of images. * LongitudinalAtlasBuilder: Longitudinal atlas building for a population of subjects, each with a longitudinal data set. * FRATUtils: A collection of utility functions for working with volumes and time series files

Proper citation: Fluid Registration and Atlas Toolkit (RRID:SCR_009478) Copy   


  • RRID:SCR_009461

    This resource has 1+ mentions.

http://www.nitrc.org/projects/dwiregistration/

This code registers linearly and non-linearly Diffusion Weighted Magnetic Resonance Images (DW-MRIs) by extending FLIRT (linear registration of 3D scalar volumes) and FNIRT (non-linear registration of 3D scalar volumes) in the FMRIB Software Library (FSL) to work with 4D volumes. The basis for registering DW-MRIs is the concept of Angular Interpolation (Tao, X., Miller, J. V., 2006. A method forregistering diffusion weighted magnetic resonance images. In: MICCAI. Vol. 9. pp. 594?602), which is implemented and extended to non-linear registration, based on the FLIRT and FNIRT models in FSL. See http://www.frontiersin.org/Brain_Imaging_Methods/10.3389/fnins.2013.00041/abstract. The code does not overwrite FLIRT, FNIRT or any of the FSL C++ code. It is added as FLIRT4D, FNIRT4D and supporting cost functions. The makefiles will however be overwritten to compile the new code, without affecting any version of FSL.

Proper citation: DW-MRI registration in FSL (RRID:SCR_009461) Copy   


http://www.nitrc.org/projects/longhippsegm/

Software based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two parts: a longitudinal segmentation and a longitudinal classification step.

Proper citation: Longitudinal neuroimaging hippocampal markers for diagnosing Alzheimer's disease (RRID:SCR_016282) Copy   


  • RRID:SCR_016459

    This resource has 1+ mentions.

https://www.ncbi.nlm.nih.gov/biocollections

Registry of bio-collections linked to genomes. Collection of curated dataset of metadata for culture collections, museums, herbaria and other natural history collections, including Darwin Core institution and collection codes, and URL formulae for mapping specimen ids to web pages at the collection site.

Proper citation: NCBI Biocollections (RRID:SCR_016459) Copy   


  • RRID:SCR_009560

https://github.com/clementsan/DTI-Reg

An open-source C++ application that performs pair-wise DTI registration, using scalar FA map to drive the registration. Individual steps of the pair-wise registration pipeline are performed via external applications - some of them being 3D Slicer modules. Starting with two input DTI images, scalar FA maps are generated via dtiprocess. Registration is then performed between these FA maps, via BRAINSFit/BRAINSDemonWarp or ANTS -Advanced Normalization Tools-, which provide different registration schemes: rigid, affine, BSpline, diffeomorphic, logDemons. The final deformation is then applied to the source DTI image via ResampleDTI.

Proper citation: DTI-Reg (RRID:SCR_009560) Copy   


http://www.nitrc.org/projects/girt/

A method for group-wise image registration by pairwisely registering similar images identified using graph theoretic techniques. Particularly, they use sparse coding to estimate image similarity measures among images to be registered, yielding asymmetric, group-wise image similarity measures for each image to others in the group.

Proper citation: Groupwise Image Registration Toolbox (RRID:SCR_009492) Copy   


  • RRID:SCR_017017

    This resource has 10+ mentions.

https://anima.irisa.fr

Portal provides software library and python scripts for medical image processing. Open source set of software tools for medical image processing, medical image analysis, image registration, statistical analysis, quantitative MRI processing, image denoising and filtering, and segmentation developed by VISAGES/Empenn research team. Available as Github repository and compiled binaries for various OS including OSX, Fedora, Ubuntu, Windows.

Proper citation: Anima (RRID:SCR_017017) Copy   


  • RRID:SCR_002390

http://www.med.unc.edu/bric/ideagroup/free-softwares/hammer

Software for both groupwise registration and longitudinal registration, which are the necessary steps for many brain-related applications. Specifically, groupwise registration is important for unbiased analysis of a large set of MR brain images. Therefore, in this software package, they have included two of their recently-developed groupwise registration algorithms: 1) Improved unbiased groupwise registration guided with the sharp group-mean image, and 2) Hierarchical feature-based groupwise registration with implicit template (Groupwise-HAMMER for short). On the other hand, they also included their recently-developed groupwise longitudinal registration algorithm that aligns not only the longitudinal image sequence for each subject, but also align all longitudinal image sequences of all subjects to the common space simultaneously.

Proper citation: GLIRT (RRID:SCR_002390) Copy   


  • RRID:SCR_002340

    This resource has 10+ mentions.

https://github.com/BRAINSia/BRAINSTools/tree/master/BRAINSFit

A program for registering images with with mutual information based metric. Several registration options are given for 3,6, 9,12,16 parameter (i.e. translate, rigid, scale, scale/skew, full affine) based constraints for the registration. The program uses the Slicer3 execution model framework to define the command line arguments and can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3

Proper citation: BRAINSFit (RRID:SCR_002340) Copy   


  • RRID:SCR_002496

http://www.nitrc.org/projects/nptk/

Non-rigid registration / distortion correction tools for enhanced functional localization through the registration of EPI fMRI to high-resolution anatomical MRI.

Proper citation: NPTK (RRID:SCR_002496) Copy   


  • RRID:SCR_002596

    This resource has 50+ mentions.

http://www.nitrc.org/projects/tapir/

A set of command line tools allowing 2D and 3D image registration, mainly for medical imaging (although also relevant to other image registration problems).

Proper citation: TAPIR (RRID:SCR_002596) Copy   


http://bric.unc.edu/ideagroup/free-softwares/ABSORB/

This software package implements an algorithm for effective groupwise registration. The required input is a set of 3D MR intensity images (in Analyze format with paired .hdr and .img files) with a text file (.txt) listing all header file (.hdr) names. The output is the set of registered images together with the corresponding dense deformation fields. This software has been tested on Windows XP (32-bit) and Linux (64-bit, kernel version 2.6.18-194.el5). The images should be pre-processed before applying ABSORB: * All brain MR images used as inputs to ABSORB should be in the same situation (e.g., skull-stripped or not, cerebellum removed or not, etc.). * The input images should be in Analyze format with paired header and image files. This software was developed in IDEA group in UNC-Chapel Hill.

Proper citation: ABSORB: Atlas Building by Self-Organized Registration and Bundling (RRID:SCR_007018) Copy   


  • RRID:SCR_007017

http://openccdb-dev-web.crbs.ucsd.edu/software/index.shtm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Software to support registering brain images to the stereotaxic coordinate system of a brain atlas. It was specifically designed to work with the large scale brain mosaics. When data are uploaded to the CCDB, users may launch Jibber, a custom tool for defining correspondence points between the image and an atlas overlay. Jibber automatically downsamples the data, so that users can define the warping and scaling parameters with good interactive performance on the smaller copy. Once the warping transformation is computed, the original image and the transformation matrix are sent to a cluster of computers for warping. The current version of Jetsam is running on a 30 Sun V20 nodes and the execution time is roughly about 20 minutes per GB. The warped images are then automatically registered with an image web server that supports spatial queries based on stereotaxic coordinates. These servers generate optimized downsampled images, which can be displayed by standard online clients regardless of the size of the original image.

Proper citation: Image Workflow (RRID:SCR_007017) Copy   


  • RRID:SCR_024756

https://voxelmorph.net

Software tool for joint surface based registration and atlas construction of brain geometry and function.Cortical registration framework that jointly models mismatch between geometry and function while simultaneously learning unbiased population specific atlas.

Proper citation: JOSA (RRID:SCR_024756) Copy   


https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT

Sotware automated robust and accurate tool for linear (affine) intra- and inter-modal brain image registration.

Proper citation: FMRIB's Linear Image Registration Tool (RRID:SCR_024922) Copy   


http://www.nitrc.org/projects/mias/

Software toolkit that provides the following libraries and functions on linux platform: # Multi-resolution registration of MR images include T1, multimodality, and DTI images. # The registration model is B-spline, and users can custermize their own image similarity measures by writing a plugin function and recompile the program.

Proper citation: MIAS Registration Toolkit (RRID:SCR_002312) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X