Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 131 results
Snippet view Table view Download 131 Result(s)
Click the to add this resource to a Collection

http://www.cjdats.org

A cooperative research program to explore the issues related to the complex system of offender treatment services. Nine research centers and a Coordinating Center were created in partnership with researchers, criminal justice professionals, and drug abuse treatment practitioners to form a national research infrastructure. The establishment of CJ-DATS is an outstanding example of cooperation among Federal agencies with the research community... We need to understand how to provide better drug treatment services for criminal justice offenders to alter their drug use and criminal behavior. - Dr. Nora Volkow, Director of NIDA. CJ-DATS PHASE I In 2002, NIDA launched the National Criminal Justice����������Drug Abuse Treatment Studies (CJ-DATS). CJ-DATS is a multisite research program aimed at improving the treatment of offenders with drug use disorders and integrating criminal justice and public health responses to drug involved offenders. From 2002 through 2008, CJ-DATS researchers from 9 research centers, a coordinating center, and NIDA worked together with federal, state, and local criminal justice partners to develop and test integrated approaches to the treatment of offenders with drug use disorders. The areas that were studied included: * Assessing Offender Problems * Measuring Progress in Treatment and Recovery * Linking Criminal Justice and Drug Abuse Treatment * Adolescent Interventions * HIV and Hepatitis Risk Reduction * Understanding Systems CJ-DATS PHASE II In 2008, CJ-DATS began to focus on the problems of implementing research-based practices drug treatment practices. This research concerns the organizational and systems processes involved in implementing valid, evidence-based practices to reduce drug use and drug-related recidivism for individuals in the criminal justice system. 12 CJ-DATS Research Centers are conducting implementation research in three primary domains: * Research to improve the implementation of evidence-based assessment processes for offenders with drug problems * Implementing effective treatment for drug-involved offenders * Implementing evidence-based interventions to improve an HIV continuum-of-care for offenders

Proper citation: Criminal Justice Drug Abuse Treatment Studies (RRID:SCR_006996) Copy   


https://github.com/KumarLabJax/JABS-behavior-classifier

Video based phenotyping platform for laboratory mouse. Provides complete details of software and hardware, including 3D designs used for data collection. Data acquisition system consists of video collection hardware and software, behavior labeling and active learning app, and online database for sharing classifiers. Hardware and software solution collects high quality data for behavior analysis.

Proper citation: JAX Animal Behavior System (RRID:SCR_023721) Copy   


http://lucene1.neuinfo.org/nif_resource/monthly_results/current/

An automatic pipeline based on an algorithm that identifies new resources in publications every month to assist the efficiency of NIF curators. The pipeline is also able to find the last time the resource's webpage was updated and whether the URL is still valid. This can assist the curator in knowing which resources need attention. Additionally, the pipeline identifies publications that reference existing NIF Registry resources as this is also of interest. These mentions are available through the Data Federation version of the NIF Registry, http://neuinfo.org/nif/nifgwt.html?query=nlx_144509 The RDF is based on an algorithm on how related it is to neuroscience. (hits of neuroscience related terms). Each potential resource gets assigned a score (based on how related it is to neuroscience) and the resources are then ranked and a list is generated.

Proper citation: NIF Registry Automated Crawl Data (RRID:SCR_012862) Copy   


https://www.ohsu.edu/custom/library/digital-collections/projectionmap

Data set of thalamo-centric mesoscopic projection maps to the cortex and striatum. The maps are established through two-color, viral (rAAV)-based tracing images and high throughout imaging.

Proper citation: Mouse Thalamic Projectome Dataset (RRID:SCR_015702) Copy   


  • RRID:SCR_015769

    This resource has 100+ mentions.

https://abcdstudy.org

Long-term study of brain development and child health in the United States. The study tracks subjects' biological and behavioral development through adolescence into young adulthood to determine how childhood experiences (such as sports, videogames, social media, unhealthy sleep patterns, and smoking) interact with each other and with a child’s changing biology to affect brain development and social, behavioral, academic, health, and other outcomes.

Proper citation: ABCD Study (RRID:SCR_015769) Copy   


  • RRID:SCR_008914

    This resource has 10+ mentions.

http://mialab.mrn.org/data/index.html

An MRI data set that demonstrates the utility of a mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described, provide a useful baseline for future investigations of brain networks in health and disease.

Proper citation: MIALAB - Resting State Data (RRID:SCR_008914) Copy   


https://neuinfo.org/mynif/search.php?q=nlx_149462&t=indexable&list=cover&nif=nlx_144509-1

A virtual database that indexes both BioNOT for negation data, and the Resource Discovery Pipeline: an automated resource discovery and semi-automated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. This virtual database currently indexes the following resources: * BioNOT, http://snake.ims.uwm.edu/bionot/index.php?searchterm=mecp2+autism&submit=Search * Resource Discovery Pipeline, http://lucene1.neuinfo.org/nif_resource/current/

Proper citation: Integrated Auto-Extracted Annotation (RRID:SCR_005892) Copy   


  • RRID:SCR_003389

    This resource has 100+ mentions.

http://compbio.uthsc.edu/miRSNP/

Database of naturally occurring DNA variations in microRNA (miRNA) seed regions and miRNA target sites. MicroRNAs pair to the transcripts of protein-coding genes and cause translational repression or mRNA destabilization. SNPs and INDELs in miRNAs and their target sites may affect miRNA-mRNA interaction, and hence affect miRNA-mediated gene repression. The PolymiRTS database was created by scanning 3'UTRs of mRNAs in human and mouse for SNPs and INDELs in miRNA target sites. Then, the potential downstream effects of these polymorphisms on gene expression and higher-order phenotypes are identified. Specifically, genes containing PolymiRTSs, cis-acting expression QTLs, and physiological QTLs in mouse and the results of genome-wide association studies (GWAS) of human traits and diseases are linked in the database. The PolymiRTS database also includes polymorphisms in target sites that have been supported by a variety of experimental methods and polymorphisms in miRNA seed regions.

Proper citation: PolymiRTS (RRID:SCR_003389) Copy   


  • RRID:SCR_001551

    This resource has 10+ mentions.

http://proteomics.ucsd.edu/Software/NeuroPedia/index.html

A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.

Proper citation: NeuroPedia (RRID:SCR_001551) Copy   


http://pingstudy.ucsd.edu/

A large multi-site pediatric MRI and genetics data resource to facilitate studies of the genomic landscape of the developing human brain. It includes information about the developing mental and emotional functions of the children to understand the genetic basis of individual differences in brain structure and connectivity, cognition, and personality. Investigators on the project are studying 1400 children between the ages of 3 and 20 years so that links between genetic variation and developing patterns of brain connectivity can be examined. Investigators interested in the effects of a particular gene will be able to search the database for any brain areas or connections between areas that differ as a function of variation in a particular gene, and also to determine if the genes appear to affect the course of brain development at some point during childhood. A data exploration tool has been created for mapping and analyzing MRI data sets collected for PING and related developmental studies. Approved investigators will be able to view raw image sets and derived 3D brain maps of MRI and DTI data, conduct hypothesis testing, and graph brain area measures as they change across the time course of development. PING Cores * Coordinating Core: Functions include project management, screening of participants and maintaining the database * Neuroimaging Core: applying a standardized high-resolution structural MRI protocol involving 3-D T1-weighted scans, a T2-weighted volume, and a set of diffusion-weighted scans with multiple b values and diffusion directions, scans to estimate MRI relaxation rates, and gradient echo EPI scans for resting state fMRI. Importantly, adaptive motion compensation, using ����??PROMO����??, a novel real-time motion correction algorithm will be used. Specific PING protocols for each scanner manufacturer: ** PING MRI Protocol - GE ** PING MRI Protocol - Philips ** PING MRI Protocol - Siemens * Assessment Core: Cognitive assessments for the PING project are conducted using the NIH Toolbox for Cognition. * Genomics Core: functions as a central repository for receipt of saliva samples collected for each study participant. Once received, samples are catalogued, maintained, and DNA is extracted using state-of-the-field laboratory techniques. Ultimately, genome-wide genotyping is performed on the extracted DNA using the Illumina Human660W-Quad BeadChip. PING involves 10 sites throughout the country including UCSD, University of Hawaii, Scripps Genomics, UCLA, UC Davis, Kennedy Krieger Institute/Johns Hopkins, Sacker Institute/Cornell University, University of Massachusetts, Massachusetts General Hospital/Harvard, and Yale. Families who may want to participate in the study, or others who want to know more about it, may email questions to ping (at) ucsd.edu.

Proper citation: Pediatric Imaging Neurocognition and Genetics (RRID:SCR_008953) Copy   


http://www.dd-database.org/

Database of bibliographic details of over 9,000 references published between 1951 and the present day, and includes abstracts, journal articles, book chapters and books replacing the two former separate websites for Ian Stolerman's drug discrimination database and Dick Meisch's drug self-administration database. Lists of standardized keywords are used to index the citations. Most of the keywords are generic drug names but they also include methodological terms, species studied and drug classes. This index makes it possible to selectively retrieve references according to the drugs used as the training stimuli, drugs used as test stimuli, drugs used as pretreatments, species, etc. by entering your own terms or by using our comprehensive lists of search terms. Drug Discrimination Drug Discrimination is widely recognized as one of the major methods for studying the behavioral and neuropharmacological effects of drugs and plays an important role in drug discovery and investigations of drug abuse. In Drug Discrimination studies, effects of drugs serve as discriminative stimuli that indicate how reinforcers (e.g. food pellets) can be obtained. For example, animals can be trained to press one of two levers to obtain food after receiving injections of a drug, and to press the other lever to obtain food after injections of the vehicle. After the discrimination has been learned, the animal starts pressing the appropriate lever according to whether it has received the training drug or vehicle; accuracy is very good in most experiments (90 or more correct). Discriminative stimulus effects of drugs are readily distinguished from the effects of food alone by collecting data in brief test sessions where responses are not differentially reinforced. Thus, trained subjects can be used to determine whether test substances are identified as like or unlike the drug used for training. Drug Self-administration Drug Self-administration methodology is central to the experimental analysis of drug abuse and dependence (addiction). It constitutes a key technique in numerous investigations of drug intake and its neurobiological basis and has even been described by some as the gold standard among methods in the area. Self-administration occurs when, after a behavioral act or chain of acts, a feedback loop results in the introduction of a drug or drugs into a human or infra-human subject. The drug is usually conceptualized as serving the role of a positive reinforcer within a framework of operant conditioning. For example, animals can be given the opportunity to press a lever to obtain an infusion of a drug through a chronically-indwelling venous catheter. If the available dose of the drug serves as a positive reinforcer then the rate of lever-pressing will increase and a sustained pattern of responding at a high rate may develop. Reinforcing effects of drugs are distinguishable from other actions such as increases in general activity by means of one or more control procedures. Trained subjects can be used to investigate the behavioral and neuropharmacological basis of drug-taking and drug-seeking behaviors and the reinstatement of these behaviors in subjects with a previous history of drug intake (relapse models). Other applications include evaluating novel compounds for liability to produce abuse and dependence and for their value in the treatment of drug dependence and addiction. The bibliography is updated about four times per year.

Proper citation: Comprehensive Drug Self-administration and Discrimination Bibliographic Databases (RRID:SCR_000707) Copy   


http://portal.ncibi.org/gateway/saga.html

SAGA (Substructure Index-based Approximate Graph Alignment) is a tool for querying a biological graph database to retrieve matches between subgraphs of molecular interactions and biological networks. SAGA implements an efficient approximate subgraph matching algorithm that can be used for a variety of biological graph matching problems such as the pathway matching SAGA uses to compare pathways in KEGG and Reactome. You can also use SAGA to find matches in literature databases that have been parsed into semantic graphs. In this use of SAGA, portions of PubMed have been parsed into graphs that have nodes representing gene names. A link is drawn between two genes if they are discussed in the same sentence (indicating there is potential association between the two genes). SAGA lets you match graphs between different databases even though the content is distinct and the databases organize pathways in different ways. This cross-database matching is achieved by SAGA's flexible approximate subgraph matching model that computes graph similarity, and allows for node gaps, node mismatches, and graph structural differences. Comparing pathways from different databases can be a useful precursor to pathway data integration. SAGA is very efficient for querying relatively small graphs, but becomes prohibitory expensive for querying large graphs. Large graph data sets are common in many emerging database applications, and most notably in large-scale scientific applications. To fully exploit the wealth of information encoded in graphs, effective and efficient graph matching tools are critical. Due to the noisy and incomplete nature of real graph datasets, approximate, rather than exact, graph matching is required. Furthermore, many modern applications need to query large graphs, each of which has hundreds to thousands of nodes and edges. TALE is an approximate subgraph matching tool for matching graph queries with a large number of nodes and edges. TALE employs a novel indexing technique that achieves a high pruning power and scales linearly with the database size.

Proper citation: Substructure Index-based Approximate Graph Alignment (RRID:SCR_003434) Copy   


  • RRID:SCR_007143

    This resource has 1+ mentions.

http://hendrix.imm.dtu.dk/software/lyngby/

Matlab toolbox for the analysis of functional neuroimages (PET, fMRI). The toolbox contains a number of models: FIR-filter, Lange-Zeger, K-means clustering among others, visualizations and reading of neuroimaging files.

Proper citation: Lyngby (RRID:SCR_007143) Copy   


  • RRID:SCR_025803

    This resource has 50+ mentions.

https://gseapy.readthedocs.io/en/latest/

Software Python package for performing gene set enrichment analysis. Used for characterizing gene expression changes by analysis of large single-cell datasets.

Proper citation: GSEApy (RRID:SCR_025803) Copy   


  • RRID:SCR_016036

https://github.com/ABCD-STUDY/FINDTHECAT

Software that conducts a jspsych test for response time evaluation. Used in the ABCD Study.

Proper citation: FINDTHECAT (RRID:SCR_016036) Copy   


  • RRID:SCR_016033

https://github.com/ABCD-STUDY/stroop-task

Software that conducts the Stroop Color Task. Used in the ABCD Study.

Proper citation: stroop-task (RRID:SCR_016033) Copy   


  • RRID:SCR_016911

    This resource has 1+ mentions.

https://github.com/QTIM-Lab/DeepNeuro

Software Python package for neuroimaging data. Framework to design and train neural network architectures. Used in medical imaging community to ensure consistent performance of networks across variable users, institutions, and scanners.

Proper citation: DeepNeuro (RRID:SCR_016911) Copy   


  • RRID:SCR_022976

    This resource has 1+ mentions.

https://github.com/compbiolabucf/omicsGAN

Software generative adversarial network to integrate two omics data and their interaction network to generate one synthetic data corresponding to each omics profile that can result in better phenotype prediction. Used to capture information from interaction network as well as two omics datasets and fuse them to generate synthetic data with better predictive signals.

Proper citation: OmicsGAN (RRID:SCR_022976) Copy   


  • RRID:SCR_016032

https://github.com/ABCD-STUDY/redcap-importer

Software that automates the process of retrieving and converting data to the format of a RedCap table and allows selection of directories and files for import.

Proper citation: redcap-importer (RRID:SCR_016032) Copy   


  • RRID:SCR_016030

https://github.com/ABCD-STUDY/ABCDreport

Software application as a simple system to review study progress. Used in ABCD study.

Proper citation: ABCDreport (RRID:SCR_016030) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X