Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 out of 18 results
Snippet view Table view Download 18 Result(s)
Click the to add this resource to a Collection

http://vision.ucsf.edu/hortonlab/index.html

Devise better ways to prevent and treat vision loss due to amblyopia and strabismus, and to advance medical science by understanding the human visual system. Various Images, Videos and Talks related to the research are available. In the Laboratory for Visual Neuroscience at the University of California, San Francisco, we are seeking to discover how visual perception occurs in the human brain. The function of the visual system is to guide our behavior by providing an efficient means for the rapid assimilation of information from the environment. As we navigate through our surroundings, a continuous stream of light images impinges on our eyes. In the back of each eye a light-sensitive tissue, the retina, converts patterns of light energy into electrical discharges known as action potentials. These signals are conveyed along the axons of retinal ganglion cells to the lateral geniculate body, a relay nucleus in the thalamus. Most of the output of the lateral geniculate body is relayed directly to the primary visual cortex (striate cortex, V1), and then to surrounding visual association areas. To understand the function of the visual pathways, our research is focused on 5 major themes: * Organization of Primary Visual Cortex * Mapping of Extrastriate Visual Cortex * Amblyopia and Visual Development * Strabismus and Visual Suppression * The Human Visual Cortex

Proper citation: UCSF Laboratory for Visual Neuroscience (RRID:SCR_004913) Copy   


http://research.mssm.edu/cnic/

Center to advance research and training in mathematical, computational and modern imaging approaches to understanding the brain and its functions. Software tools and associated reconstruction data produced in the center are available. Researchers study the relationships between neural function and structure at levels ranging from the molecular and cellular, through network organization of the brain. This involves the development of new computational and analytic tools for imaging and visualization of 3-D neural morphology, from the gross topologic characteristics of the dendritic arbor to the fine structure of spines and their synapses. Numerical simulations of neural mechanisms based on these structural data are compared with in-vivo and in-vitro electrophysiological recordings. The group also develops new theoretical and analytic approaches to exploring the function of neural models of working memory. The goal of this analytic work is to combine biophysically realistic models and simulations with reduced mathematical models that capture essential dynamical behaviors while reproducing the functionally important features of experimental data. Research areas include: Imaging Studies, Volume Integration, Visualization Techniques, Medial Axis Extraction, Spine Detection and Classification, Applications of Rayburst, Analysis of Spatially Complex Structures, Computational Modeling, Mathematical and Analytic Studies

Proper citation: Computational Neurobiology and Imaging Center (RRID:SCR_013317) Copy   


http://www.cma.mgh.harvard.edu/ibvd/

A database of brain neuroanatomic volumetric observations spanning various species, diagnoses, and structures for both individual and group results. A major thrust effort is to enable electronic access to the results that exist in the published literature. Currently, there is quite limited electronic or searchable methods for the data observations that are contained in publications. This effort will facilitate the dissemination of volumetric observations by making a more complete corpus of volumetric observations findable to the neuroscience researcher. This also enhances the ability to perform comparative and integrative studies, as well as metaanalysis. Extensions that permit pre-published, non-published and other representation are planned, again to facilitate comparative analyses. Design strategy: The principle organizing data structure is the "publication". Publications report on "groups" of subjects. These groups have "demographic" information as well as "volume" information for the group as a whole. Groups are comprised of "individuals", which also have demographic and volume information for each of the individuals. The finest-grained data structure is the "individual volume record" which contains a volume observation, the units for the observation, and a pointer to the demographic record for individual upon which the observation is derived. A collection of individual volumes can be grouped into a "group volume" observation; the group can be demographically characterized by the distribution of individual demographic observations for the members of the group.

Proper citation: Internet Brain Volume Database (RRID:SCR_002060) Copy   


https://bams1.org/

Knowledge management system designed to handle neurobiological information at different levels of organization of vertebrate nervous system. Database and repository for information about neural circuitry, storing and analyzing data concerned with nomenclature, taxonomy, axonal connections, and neuronal cell types. Handles data and metadata collated from original literature, or inserted by scientists that is associated to four levels of organization of vertebrate nervous system. Data about expressed molecules, neuron types and classes, brain regions, and networks of brain regions.

Proper citation: Brain Architecture Management System (RRID:SCR_007251) Copy   


  • RRID:SCR_006934

    This resource has 10+ mentions.

http://scalablebrainatlas.incf.org/

A web-based, interactive brain atlas viewer, containing a growing number of atlas templates for various species, including mouse, macaque and human. Standard features include fast brain region lookup, point and click to select a region and view its full 3D extent, mark a stereotaxic coordinate and view all regions in a hierarchy. Built-in extensions are the CoCoMac plugin, which provides a spatial display of Macaque connectivity, and a service to transform stereotaxic coordinates to and from the INCF Waxholm space for the mouse. Three dimensional renderings of brain regions are available through a Matlab interface (local installation of Matlab required). The SBA is designed to be customizable. External users can create plugins, hosted on their own servers, to interactively attach images or data to spatial atlas locations. This fully web-based display engine for brain atlases and topologies allows client websites to show brain region related data in a 3D interactive context. Currently available atlases are: * Macaque: The Paxinos Rhesus Monkey atlas (2000) * Macaque: Various templates available through Caret, registered to F99 space: Felleman and Van Essen (1991), Lewis and Van Essen (2000), Regional Map from K��tter and Wanke (2005), Paxinos Rhesus Monkey (2000) * Macaque: The NeuroMaps Macaque atlas (2008) * Mouse: The INCF Waxholm Space for the mouse (2011). Previous versions available. * Mouse: The Allen Mouse Brain volumetric atlas (ABA07) * Human: The LPBA40 parcellation, registered to SRI24 space A variety of services are being developed around the templates contained in the Scalable Brain Atlas. For example, you can include thumbnails of brain regions in your own webpage. Other applications include: * Analyze atlas templates in Matlab * List all regions belonging to the given template * List of supported atlas templates * Find region by coordinate * Color-coded PNG (bitmap) or SVG (vector) image of a brain atlas slice * Region thumbnail in 2D (slice) or 3D (stack of slices) The Scalable Brain Atlas is created by Rembrandt Bakker and Gleb Bezgin, under supervision of Rolf K��tter in the NeuroPhysiology and -Informatics group of the Donders Institute, Radboud UMC Nijmegen.

Proper citation: Scalable Brain Atlas (RRID:SCR_006934) Copy   


  • RRID:SCR_004232

    This resource has 1+ mentions.

http://openconnectomeproject.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.

Proper citation: Open Connectome Project (RRID:SCR_004232) Copy   


  • RRID:SCR_003142

    This resource has 10+ mentions.

http://braininfo.rprc.washington.edu

Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.

Proper citation: BrainInfo (RRID:SCR_003142) Copy   


  • RRID:SCR_002388

    This resource has 100+ mentions.

http://www.genenetwork.org/

Web platform that provides access to data and tools to study complex networks of genes, molecules, and higher order gene function and phenotypes. Sequence data (SNPs) and transcriptome data sets (expression genetic or eQTL data sets). Quantitative trait locus (QTL) mapping module that is built into GN is optimized for fast on-line analysis of traits that are controlled by combinations of gene variants and environmental factors. Used to study humans, mice (BXD, AXB, LXS, etc.), rats (HXB), Drosophila, and plant species (barley and Arabidopsis). Users are welcome to enter their own private data.

Proper citation: GeneNetwork (RRID:SCR_002388) Copy   


  • RRID:SCR_002767

    This resource has 1+ mentions.

http://www.macaque.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.

Proper citation: Macaque.org (RRID:SCR_002767) Copy   


  • RRID:SCR_002759

    This resource has 10+ mentions.

http://sumsdb.wustl.edu/sums/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures

Proper citation: SumsDB (RRID:SCR_002759) Copy   


  • RRID:SCR_007277

    This resource has 50+ mentions.

http://cocomac.g-node.org/main/index.php?

Online access (html or xml) to structural connectivity ("wiring") data on the Macaque brain. The database has become by far the largest of its kind, with data extracted from more than four hundred published tracing studies. The main database, contains data from tracing studies on anatomical connectivity in the macaque cerebral cortex. Also available are a variety of tools including a graphical simulation workbench, map displays and the CoCoMac-Paxinos-3D viewer. Submissions are welcome. To overcome the problem of divergent brain maps ORT (Objective Relational Transformation) was developed, an algorithmic method to convert data in a coordinate- independent way based on logical relations between areas in different brain maps. CoCoMac data is used to analyze the organization of the cerebral cortex, and to establish its structure- function relationships. This includes multi-variate statistics and computer simulation of models that take into account the real anatomy of the primate cerebral cortex. This site * Provides full, scriptable open access to the data in CoCoMac (you must adhere to the citation policy) * Powers the graphical interface to CoCoMac provided by the Scalable Brain Atlas * Sports an extensive search/browse wizard, which automatically constructs complex search queries and lets you further explore the database from the results page. * Allows you to get your hands dirty, by using the custom SQL query service. * Displays connectivity data in tabular form, through the axonal projections service. CoCoMac 2 was initiated at the Donders Institute for Brain, Cognition and Behaviour, and is currently supported by the German neuroinformatics node and the Computational and Systems Neuroscience group at the Juelich research institute.

Proper citation: CoCoMac (RRID:SCR_007277) Copy   


http://www.nitrc.org/projects/uncuw_macdevmri/

A macaque brain MRI database characterizing the normal postnatal macaque brain development. This longitudinal primate database was acquired from a cohort of healthy macaque monkeys ranging from a few week olds up to 3-year-old adolescents. Each scan consists of structural (both T1 and T2) and diffusion MRI.

Proper citation: UNC-Wisconsin Neurodevelopment Rhesus MRI Database (RRID:SCR_014177) Copy   


https://scicrunch.org/scicrunch/data/source/nlx_154697-8/search?q=*

A data set of connectivity statements from BAMS, CoCoMac, BrainMaps, Connectome Wiki, the Hippocampal-Parahippocampal Table of Temporal-Lobe.com, and Avian Brain Circuitry Database. The data set lists which brain sites connectivity is to and from, the organism connectivity is mapped in, and journal references.

Proper citation: Integrated Nervous System Connectivity (RRID:SCR_006391) Copy   


http://www.ncrr.nih.gov/comparative_medicine/resource_directory/primates.asp

THIS RESOURCE IS NO LONGER IN SERVICE, documented on October 16, 2013. NCRR has been absorbed into other parts of the National Institutes of Health. This organizational structure is no longer available. Provides laboratory scientists and clinical researchers with the resources and tools they need to understand, detect, treat and prevent a wide range of diseases. Animal models, such as nonhuman primates, are a critical component of biomedical research, having profound implications for public health. Scientists depend on laboratory animals and other nonhuman models for investigating biological processes, studying the causes of diseases and testing promising new therapies. Nonhuman primates, in particular, are important for translational research because of their close physiological similarities to humans. They enable discoveries that have direct application to human studies, bridging the gap between basic science and human medicine. Discoveries in animal models are helping scientists test treatments for human conditions such as drug addiction, obesity, malaria, HIV/AIDS and neurodegenerative diseases, accelerating the pace at which these research advances can be translated into treatments for patients. Through its Division of Comparative Medicine, NCRR offers a wide variety of primate resources for NIH-funded scientists across the nation. Additionally, funding opportunities are available to National Primate Research Centers. Eight National Primate Research Centers (NPRCs) located throughout the country provide animals, facilities and expertise in all aspects of nonhuman primate biology and husbandry. These facilities and resources enable collaborative research among NPRC staff scientists, investigators from the NPRC host institution and other NIH-funded researchers. Major areas of research benefiting from the primate centers include AIDS, avian flu, Alzheimer''s disease, Parkinson''s disease, diabetes, asthma and endo-metriosis. The centers????????????????? specialized resources are intended to support investigators who receive their primary research project funding from NIH, but they also may be used by investigators who are funded by other federal, state and local agencies, as well as by research foundations and the private sector. Together the primate centers have more than 28,000 nonhuman primates of 20 different species. This portal covers the following topics: * National Primate Research Centers * Monkey Research Resources * Chimpanzee Research Resources * Chimpanzee Management Program * Specific-Pathogen-Free Macaque Resources * Nonhuman Primate Research Reagents

Proper citation: National Center for Research Resources - Primate Resources (RRID:SCR_006863) Copy   


  • RRID:SCR_008896

    This resource has 1+ mentions.

http://www.3dbar.org

Software package for reconstructing three-dimensional models of brain structures from 2-D delineations using a customizable and reproducible workflow. 3dBAR also works as an on-line service (http://service.3dbar.org) offering a variety of functions for the hosted datasets: * downloading reconstructions of desired brain structures in predefined quality levels in various supported formats as well as created using customizable settings, * previewing models as bitmap thumbnails and (for webGL enabled browsers) interactive manipulation (zooming, rotating, etc.) of the structures, * downloading slides from available datasets as SVG drawings. 3dBAR service can also be used by other websites or applications to enhance their functionality. * Operating System: Linux * Programming Language: Python * Supported Data Format: NIfTI-1, Other Format, VRML

Proper citation: 3DBar (RRID:SCR_008896) Copy   


  • RRID:SCR_006010

    This resource has 1+ mentions.

http://neuroviisas.med.uni-rostock.de/neuroviisas.html

An open framework for integrative data analysis, visualization and population simulations for the exploration of network dynamics on multiple levels. This generic platform allows the integration of neuroontologies, mapping functions for brain atlas development, and connectivity data administration; all of which are required for the analysis of structurally and neurobiologically realistic simulations of networks. What makes neuroVIISAS unique is the ability to integrate neuroontologies, image stacks, mappings, visualizations, analyzes and simulations to use them for modelling and simulations. Based on the analysis of over 2020 tracing studies, atlas terminologies and registered histological stacks of images, neuroVIISAS permits the definition of neurobiologically realistic networks that are transferred to the simulation engine NEST. The analysis on a local and global level, the visualization of connectivity data and the results of simulations offer new possibilities to study structural and functional relationships of neural networks. neuroVIISAS provide answers to questions like: # How can we assemble data of tracing studies? (Metastudy) # Is it possible to integrate tracing and brainmapping data? (Data Integration) # How does the network of analyzed tracing studies looks like? (Visualization) # Which graph theoretical properties posses such a network? (Analysis) # Can we perform population simulations of a tracing study based network? (Simulation and higher level data integration) neuroVIISAS can be used to organize mapping and connectivity data of central nervous systems of any species. The rat brain project of neuroVIISAS contains 450237 ipsi- and 175654 contralateral connections. A list of evaluated tracing studies are available. PyNEST script generation does work using WINDOWS OS, however, the script must be transferred to a UNIX OS with installed NEST. The results file of the NEST simulation can be visualized and analyzed by neuroVIISAS on a WINDOWS OS.

Proper citation: neuroVIISAS (RRID:SCR_006010) Copy   


http://www.bic.mni.mcgill.ca/ServicesAtlases/Macaque

A reference atlas of standard macaque monkey magnetic resonance images. The template brain volume that offers a common stereotaxic reference frame to localize anatomical and functional information in an organized and reliable way for comparison across individual macaque monkeys and studies. We have used MRI volumes from a group of 25 normal adult macaque monkeys (18 Macaca fascicularis, 7 Macaca mulatta) to create the individual atlas. Thus, the atlas does not rely on the anatomy of a single subject, but instead depends on nonlinear normalization of numerous macaque brains mapped to an average template image that is faithful to the location of anatomical structures. Tools for registering a native MRI to the MNI macaque atlas can be found in the Software section. Viewing the atlas and associated volumes online requires Java browser support. Additionally, you may download the atlas and associated files in your chosen format.

Proper citation: McConnell Brain Imaging Center MNI Macaque Atlas (RRID:SCR_005265) Copy   


  • RRID:SCR_002099

    This resource has 1+ mentions.

http://brainvis.wustl.edu/wiki/index.php/Caret:Atlases

THIS RESOURCE IS NO LONGER IS SERVICE. Documented on July,29,2022. Surface-based atlases of human, macaque, rat and mouse cerebral and cerebellar cortices derived from structural MRI volumes developed in the Van Essen laboratory can be downloaded by direct links on the SumsDB database and can be viewed using freely available Caret (offline) and WebCaret (online) software. The human and macaque atlases include a large and growing compendium of experimental data pertaining to the structural and functional organization of primate cerebral cortex.

Proper citation: Surface-Based Atlases (RRID:SCR_002099) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X