Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 out of 14 results
Snippet view Table view Download 14 Result(s)
Click the to add this resource to a Collection

http://www.usc.edu/

American private research university in Los Angeles, California. Founded in 1880, it is the oldest private research university in California. USC has historically educated a large number of the nation's business leaders and professionals.

Proper citation: University of Southern California; Los Angeles; USA (RRID:SCR_008093) Copy   


http://www.oasis-brains.org/

Project aimed at making neuroimaging data sets of brain freely available to scientific community. By compiling and freely distributing neuroimaging data sets, future discoveries in basic and clinical neuroscience are facilitated.

Proper citation: Open Access Series of Imaging Studies (RRID:SCR_007385) Copy   


  • RRID:SCR_000155

http://www.birncommunity.org/current-users/morphometry-birn/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 4th,2023. Calibration data set of spoiled gradient-recalled echo magnetic resonance imaging data from five healthy volunteers (four males and one female) scanned twice at four sites having 1.5T systems from different vendors (Siemens, GE, Marconi Medical Systems) pooled by the Morphometry Testbed's (MBIRN). Some subjects were also scanned a single time at another site. One subject was only scanned twice at three sites (subject 73213384) and once at another site. For each subject, four Fast Low-Angle Shot (FLASH) scans with flip angles of 3, 5, 20, and 30 degrees were obtained in a single scan session, from which tissue proton density and T1 maps can be derived. These data were acquired to investigate various metrics of within-site and across-site reproducibility. The images have been defaced so that no facial features can be reconstructed from these data. The Morphometry Testbed (MBIRN) of the Biomedical Informatics Research Network (BIRN) focused on pooling and analyzing of neuroimaging data acquired at multiple sites. Specific applications include potential relationships between anatomical differences and specific memory dysfunctions, such as Alzheimer's disease. With the completion of the initial BIRN testbed phase, each of the original BIRN testbeds have now been retired in order to focus on new users in other biomedical domains.

Proper citation: Morphometry BIRN (RRID:SCR_000155) Copy   


http://www.loni.usc.edu/BIRN/Projects/Mouse/

Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.

Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy   


  • RRID:SCR_006126

    This resource has 1+ mentions.

http://www.birncommunity.org/tools-catalog/human-imaging-database-hid/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented October 5, 2017.

Database management system developed to handle the increasingly large and diverse datasets collected as part of the MBIRN and FBIRN collaboratories and throughout clinical imaging communities at large. The HID can be extended to contain relevant information concerning experimental subjects, assessments of subjects, the experimental data collected, the experimental protocols, and other metadata normally included with experiments.

Proper citation: Human Imaging Database (RRID:SCR_006126) Copy   


  • RRID:SCR_006782

    This resource has 50+ mentions.

http://www.re3data.org/

Global registry of research data repositories from all academic disciplines that allows the easy identification of appropriate research data repositories, both for data producers and users. Information icons display principal attributes of a repository that can be used for multi-faceted searches. Repository operators can suggest their infrastructures to be listed via a simple application form. A repository is indexed when the minimum requirements are met, i.e. mode of access to the data and repository, as well as the terms of use.

Proper citation: re3data.org (RRID:SCR_006782) Copy   


  • RRID:SCR_001976

    This resource has 1+ mentions.

http://www.ncbcs.org/biositemaps/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 27,2023. Biositemaps represent a mechanism for computational biologists and bio-informaticians to openly broadcast and retrieve meta-data about biomedical data, tools and services (i.e., biomedical resources) over the Internet. All Institutions with an interest in biomedical research can publish a biositemap.rdf file on their Internet site. The technology, developed by the Biositemaps Working Group of the NIH Roadmap National Centers of Biomedical Computing (NCBC), addresses (i) locating, (ii) querying, (iii) composing or combining, and (iv) mining biomedical resources. Each site which intends to contribute to the inventory instantiates a file on its Internet site biositemap.rdf which conforms to a defined RDF schema and uses concepts from the Biomedical Resource Ontology to describe the resources. Each biositemap.rdf file is simply a list of controlled metadata about resources (software tools, databases, material resources) that your organization uses or believes are important to biomedical research. The key enabling technologies are the Information Model (IM) which is the list of metadata fields about each resource (resource_name, description, contact_person, resource_type,...) and the Biomedical Resource Ontology (BRO) which is a controlled terminology for the resource_typeand which is used to improve the sensitivity and specificity of web searches. Biositemaps blend the features of Sitemaps (enabling efficient web-content exploration) and RSS Feeds (a mechanism for wide and effective news dissemination). As a hybrid between Sitemaps and RSS feeds, the Biositemap infrastructure facilitates a decentralized, portable, extensible and computationally tractable generation and consumption of meta-data about existent, revised and new resources for biomedical computation. Web browsers, crawlers and robots can discover, accumulate, process, integrate and deliver Biositemaps content to (human or machine) users in a variety of graphical, tabular, computational formats. Biositemaps content allows such web browsers to pool resource-associated metadata from disparate and diverse sites and present it to the user in an integrated fashion. The Biositemaps protocol provides clues, information and directives for all Biositemap web harvesters that point to the existence and content of such biomedical resources at different sites.

Proper citation: Biositemaps (RRID:SCR_001976) Copy   


  • RRID:SCR_004139

    This resource has 50+ mentions.

http://www.datacite.org/

Platform for storing, finding and accessing data that provides a service for data centres to mint DOIs and store associated metadata. Their goals are to establish easier access to scientific research data on the Internet, increase acceptance of research data as legitimate, citable contributions to the scientific record and support data archiving that will permit results to be verified and re-purposed for future study. DataCite is global, with member institutions offering services and advice directly where they are needed by the researchers. While datasets are shared and accessed globally, researchers work within national funding and organizational frameworks. It therefore operates globally, with national representation. The DataCite Metadata Scheme is a list of core metadata properties chosen for the accurate and consistent identification of data for citation and retrieval purposes, along with recommended use instructions.

Proper citation: DataCite (RRID:SCR_004139) Copy   


  • RRID:SCR_006623

    This resource has 50+ mentions.

http://users.loni.ucla.edu/~shattuck/brainsuite/

Suite of image analysis tools designed to process magnetic resonance images (MRI) of the human head. BrainSuite provides an automatic sequence to extract genus-zero cortical surface mesh models from the MRI. It also provides a set of viewing tools for exploring image and surface data. The latest release includes graphical user interface and command line versions of the tools. BrainSuite was specifically designed to guide its users through the process of cortical surface extraction. NITRC has written the software to require minimal user interaction and with the goal of completing the entire process of extracting a topologically spherical cortical surface from a raw MR volume within several minutes on a modern workstation. The individual components of BrainSuite may also be used for soft tissue, skull and scalp segmentation and for surface analysis and visualization. BrainSuite was written in Microsoft Visual C using the Microsoft Foundation Classes for its graphical user interface and the OpenGL library for rendering. BrainSuite runs under the Windows 2000 and Windows XP Professional operating systems. BrainSuite features include: * Sophisticated visualization tools, such as MRI visualization in 3 orthogonal views (either separately or in 3D view), and overlayed surface visualization of cortex, skull, and scalp * Cortical surface extraction, using a multi-stage user friendly approach. * Tools including brain surface extraction, bias field correction, voxel classification, cerebellum removal, and surface generation * Topological correction of cortical surfaces, which uses a graph-based approach to remove topological defects (handles and holes) and ensure a tessellation with spherical topology * Parameterization of generated cortical surfaces, minimizing a harmonic energy functional in the p-norm * Skull and scalp surface extraction

Proper citation: BrainSuite (RRID:SCR_006623) Copy   


http://www.nitrc.org/

Software repository for comparing structural (MRI) and functional neuroimaging (fMRI, PET, EEG, MEG) software tools and resources. NITRC collects and points to standardized information about structural or functional neuroimaging tool or resource.

Proper citation: NeuroImaging Tools and Resources Collaboratory (NITRC) (RRID:SCR_003430) Copy   


  • RRID:SCR_007291

    This resource has 1+ mentions.

http://www.birncommunity.org/collaborators/function-birn/

The FBIRN Federated Informatics Research Environment (FIRE) includes tools and methods for multi-site functional neuroimaging. This includes resources for data collection, storage, sharing and management, tracking, and analysis of large fMRI datasets. fBIRN is a national initiative to advance biomedical research through data sharing and online collaboration. BIRN provides data-sharing infrastructure, software tools, strategies and advisory services - all from a single source.

Proper citation: Function BIRN (RRID:SCR_007291) Copy   


http://www.birncommunity.org/tools-catalog/b0-and-eddy-current-correction-code-for-diffusion-mri/

Software tool (excecutable and source code in C and C++) to correct distortions in diffusion MR images that are generated by main magnetic field inhomogeneities and eddy current induced fields generated from the direction-dependent diffusion encoding

Proper citation: B0 and eddy current correction for DTI (RRID:SCR_009529) Copy   


http://www.nihmaps.org/index.php

There is a great demand for practical tools that enable scientists to understand the organization of the fields of research of interest to them. This project is an ''unofficial'' (i.e., non-supported by NIH itself) web-based system that helps researchers understand the ''funding landscape'' of a particular field through the use of statistical analysis of the language used in grant applications'' abstracts. Our system is available at https://app.nihmaps.org/, providing both a query- and mapping- based interface for funded NIH-grants from 2007-2010. From its conception, this project has been a highly collaborative team effort. The project''s main driving force has been provided by Ned Talley but has involved ideas, technical support, academic contributions and funding from multiple sources and people.

Proper citation: NIH Topic Maps - A Topic Database of NIH Funded Grants (RRID:SCR_004180) Copy   


https://wiki.birncommunity.org/display/NEWBIRNCC/Knowledge+Engineering+from+Experimental+Design+%28%27KEfED%27%29

Knowledge engineering software for reasoning with scientific observations and interpretations. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a "neural connection matrix" interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. The KEfED model is designed to provide a lightweight representation for scientific knowledge that is (a) generalizable, (b) a suitable target for text-mining approaches, (c) relatively semantically simple, and (d) is based on the way that scientist plan experiments and should therefore be intuitively understandable to non-computational bench scientists. The basic idea of the KEfED model is that scientific observations tend to have a common design: there is a significant difference between measurements of some dependent variable under conditions specified by two (or more) values of some independent variable.

Proper citation: Knowledge Engineering from Experimental Design (RRID:SCR_001238) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X